Developing a human-on-a-chip by connecting multiple model organ systems would provide an intermediate screen for therapeutic efficacy and toxic side effects of drugs prior to conducting expensive clinical trials. However, correctly designing individual organs and scaling them relative to each other to make a functional microscale human analog is challenging, and a generalized approach has yet to be identified. In this work, we demonstrate the importance of rational design of both the individual organ and its relationship with other organs, using a simple two-compartment system simulating insulin-dependent glucose uptake in adipose tissues. We demonstrate that inter-organ scaling laws depend on both the number of cells, and on the spatial arrangement of those cells within the microfabricated construct. We then propose a simple and novel inter-organ ‘metabolically-supported functional scaling’ approach predicated on maintaining in vivo cellular basal metabolic rates, by limiting resources available to cells on the chip. This approach leverages findings from allometric scaling models in mammals that limited resources in vivo prompts cells to behave differently than in resource-rich in vitro cultures. Although applying scaling laws directly to tissues can result in systems that would be quite challenging to implement, engineering workarounds may be used to circumvent these scaling issues. Specific workarounds discussed include the limited oxygen carrying capacity of cell culture media when used as a blood substitute and the ability to engineer non-physiological structures to augment organ function, to create the transport-accessible, yet resource-limited environment necessary for cells to mimic in vivo functionality. Furthermore, designing the structure of individual tissues in each organ compartment may be a useful strategy to bypass scaling concerns at the inter-organ level.
Extracellular vesicles (EVs) such as exosomes and microvesicles released from cells are potential biomarkers for blood-based diagnostic applications. To exploit EVs as diagnostic biomarkers, an effective pre-analytical process is necessary. However, recent studies performed with blood-borne EVs have been hindered by the lack of effective purification strategies. In this study, an efficient EV isolation method was developed by using polyethylene glycol/dextran aqueous two phase system (ATPS). This method provides high EV recovery efficiency (~70%) in a short time (~15 min). Consequently, it can significantly increase the diagnostic applicability of EVs.
Nephrotoxicity is often underestimated because renal clearance in animals is higher compared to in humans. This paper aims to illustrate the potential to fill in such pharmacokinetic gaps between animals and humans using a microfluidic kidney model. As an initial demonstration, we compare nephrotoxicity of a drug, administered at the same total dosage, but using different pharmacokinetic regimens. Kidney epithelial cell, cultured under physiological shear stress conditions, are exposed to gentamicin using regimens that mimic the pharmacokinetics of bolus injection or continuous infusion in humans. The perfusion culture utilized is important both for controlling drug exposure and for providing cells with physiological shear stress (1.0 dyn cm(-2)). Compared to static cultures, perfusion culture improves epithelial barrier function. We tested two drug treatment regimens that give the same gentamycin dose over a 24 h period. In one regimen, we mimicked drug clearance profiles for human bolus injection by starting cell exposure at 19.2 mM of gentamicin and reducing the dosage level by half every 2 h over a 24 h period. In the other regimen, we continuously infused gentamicin (3 mM for 24 h). Although junctional protein immunoreactivity was decreased with both regimens, ZO-1 and occludin fluorescence decreased less with the bolus injection mimicking regimen. The bolus injection mimicking regimen also led to less cytotoxicity and allowed the epithelium to maintain low permeability, while continuous infusion led to an increase in cytotoxicity and permeability. These data show that gentamicin disrupts cell-cell junctions, increases membrane permeability, and decreases cell viability particularly with prolonged low-level exposure. Importantly a bolus injection mimicking regimen alleviates much of the nephrotoxicity compared to the continuous infused regimen. In addition to potential relevance to clinical gentamicin administration regimens, the results are important in demonstrating the general potential of using microfluidic cell culture models for pharmacokinetics and toxicity studies.
We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based ‘hard candy’ recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.