Experimental results for the rotordynamic coefficients of short (L/D = 1/6) teeth-on-stator and teeth-on-rotor labyrinth seals are presented. The effects that pressure ratio (fluid density), rotor speed, fluid pre-swirl and seal clearance have on these coefficients are studied. Tests were run out to speeds of 16000 rpm with a supply pressure of 17.3 bar and seal clearances ranging from 0.229–0.419 mm. The experimental results are compared with theoretical predictions of a two control volume compressible flow model.
The experimental results show that decreases in pressure ratio and increases in rotor speed are stabilizing while increases in fluid pre-swirl and seal clearance are destabilizing for both seal configurations. The theoretical model correctly predicts the effects of pressure ratio, rotor speed and fluid pre-swirl on the cross-coupled stiffness. It also predicts reasonable values for direct damping for all test conditions. However, the theory incorrectly predicts the effect of seal clearance on these coefficients. Consequently the theoretical predictions are much better for the large clearance seals.
Experimental results for the rotordynamic coefficients of an interlocking, compressible flow, labyrinth seal are presented. Tests were conducted at supply pressures out to 18.3 bars and rotor speeds out to 16,000 rpm. Seal back pressure was controlled to provide four pressure ratios at all supply pressures. Inlet guide vanes were used to provide fluid prerotation at the seal inlet. The experimental results are compared to the predictions of the bulk-flow, turbulent, one-control-volume, perturbation analysis of Scharrer (1988). The results show that the direct stiffness is negative but small, and is predicted well by theory. At high rotor speeds, the experimental cross-coupled stiffness is negative (stabilizing for forward whirl) for all values of fluid prerotation. Theory predicts positive (destabilizing for forward whirl) cross-coupled stiffness for high fluid prerotation, and overpredicts the direct damping of the seal. In general, the net stabilizing effect of the seal, as indicated by the whirl frequency ratio, is predicted well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.