Conformation-specific antibodies that recognize aggregated proteins associated with several conformational disorders (e.g., Parkinson and prion diseases) are invaluable for diagnostic and therapeutic applications. However, no systematic strategy exists for generating conformation-specific antibodies that target linear sequence epitopes within misfolded proteins. Here we report a strategy for designing conformation-and sequence-specific antibodies against misfolded proteins that is inspired by the molecular interactions governing protein aggregation. We find that grafting small amyloidogenic peptides (6-10 residues) from the Aβ42 peptide associated with Alzheimer's disease into the complementarity determining regions of a domain (V H ) antibody generates antibody variants that recognize Aβ soluble oligomers and amyloid fibrils with nanomolar affinity. We refer to these antibodies as gammabodies for grafted amyloid-motif antibodies. Gammabodies displaying the central amyloidogenic Aβ motif ( 18 VFFA 21 ) are reactive with Aβ fibrils, whereas those displaying the amyloidogenic C terminus ( 34 LMVGGVVIA 42 ) are reactive with Aβ fibrils and oligomers (and weakly reactive with Aβ monomers). Importantly, we find that the grafted motifs target the corresponding peptide segments within misfolded Aβ conformers. Aβ gammabodies fail to cross-react with other amyloidogenic proteins and scrambling their grafted sequences eliminates antibody reactivity. Finally, gammabodies that recognize Aβ soluble oligomers and fibrils also neutralize the toxicity of each Aβ conformer. We expect that our antibody design strategy is not limited to Aβ and can be used to readily generate gammabodies against other toxic misfolded proteins.misfolding | beta-amyloid | protein engineering A hallmark of protein misfolding disorders is that polypeptides of unrelated sequence fold into similar oligomeric and fibrillar assemblies that are cytotoxic (1). The structures of these enigmatic conformers have captured the imagination of many investigators who have sought to explain the molecular basis of proteotoxicity in conformational disorders such as Alzheimer's disease. Because misfolded proteins are typically refractory to structural methods such as X-ray crystallography and solution NMR, few high-resolution structures of full-length misfolded proteins have been reported (ref. 2 and references therein). The structures of oligomeric intermediates have proven especially difficult to characterize because these conformers are labile, transient, and, in many cases, heterogeneous.Given the complexity of high-resolution structural analysis of misfolded proteins, alternative biochemical approaches are critical for understanding structure-function relationships of aggregated proteins. A breakthrough in this area has been the development of conformation-specific antibodies that selectively recognize uniquely folded conformers of amyloidogenic proteins (3-13). Indeed, multiple conformation-specific antibodies have been reported that recognize structural features ...
High-affinity antibodies are critical for numerous diagnostic and therapeutic applications, yet their utility is limited by their variable propensity to aggregate either at low concentrations for antibody fragments or high concentrations for full-length antibodies. Therefore, determining the sequence and structural features that differentiate aggregation-resistant antibodies from aggregation-prone ones is critical to improving their activity. We have investigated the molecular origins of antibody aggregation for human V(H) domain antibodies that differ only in the sequence of the loops containing their complementarity determining regions (CDRs), yet such antibodies possess dramatically different aggregation propensities in a manner not correlated with their conformational stabilities. We find the propensity of these antibodies to aggregate after being transiently unfolded is not a distributed property of the CDR loops, but can be localized to aggregation hotspots within and near the first CDR (CDR1). Moreover, we have identified a triad of charged mutations within CDR1 and a single charged mutation adjacent to CDR1 that endow the poorly soluble variant with the desirable biophysical properties of the aggregation-resistant antibody. Importantly, we find that several other charged mutations in CDR1, non-CDR loops and the antibody scaffold are incapable of preventing aggregation. We expect that our identification of aggregation hotspots that govern antibody aggregation within and proximal to CDR loops will guide the design and selection of antibodies that not only possess high affinity and conformational stability, but also extreme resistance to aggregation.
Antibodies commonly contain hydrophobic residues within their complementarity-determining regions (CDRs) that mediate binding to target antigens. Unfortunately, hydrophobic CDRs can also promote antibody aggregation, which is especially concerning for therapeutic antibodies due to the immunogenicity of antibody aggregates. Here we investigate how the sequences of CDRs within single-domain (V(H)) antibodies specific for the Alzheimer's amyloid β peptide can be engineered to resist aggregation without reducing binding affinity. We find that domain antibodies containing clusters of hydrophobic residues within their third CDR (CDR3) are prone to aggregate within days at 25°C and minutes above 70°C. However, inserting two or more negatively charged residues at each edge of CDR3 potently suppresses antibody aggregation without altering binding affinity. We also find that inserting charged mutations at one edge of CDR3 (N- or C-terminal) prevents aggregation, but only if such mutations are located at the edge closest to most hydrophobic portion of CDR3. In contrast, charged mutations outside of CDR3 fail to suppress aggregation. Our findings demonstrate that the sequence of CDR loops can be engineered in a systematic manner to improve antibody solubility without altering binding affinity or specificity.
Fig. 7. IAPP and α-Synuclein gammabodies potently inhibit amyloid formation in a sequence-specific manner. IAPP (32 μM) and α-Synuclein (residues 1-115, 50 μM) were incubated in the absence (control) and presence of gammabodies (1:10 gammabody:monomer molar ratio), and fibrillization was monitored via (A) immunoblotting and (B) AFM. In B, IAPP and α-Synuclein fibrillization was also monitored in the presence of sequence-specific (R10/99, IAPP residues 7-17; 5C2, α-Synuclein residues 61-95) and conformation-specific (A11, prefibrillar oligomers; OC, fibrillar conformers) antibodies (1:10 antibody:monomer molar ratio). In B, the AFM images are 3 × 3 μm, and the blank images are samples with heights <1 nm. The heights of the IAPP and α-Synuclein aggregates are 21 ± 3 and 25 ± 4 nm, respectively.
The ability of antibodies to bind to target molecules with high affinity and specificity has led to their widespread use in diagnostic and therapeutic applications. Nevertheless, a limitation of antibodies is their propensity to self-associate and aggregate at high concentrations and elevated temperatures. The large size and multidomain architecture of full-length monoclonal antibodies have frustrated systematic analysis of how antibody sequence and structure regulate antibody solubility. In contrast, analysis of single and multidomain antibody fragments that retain the binding activity of mono-clonal antibodies has provided valuable insights into the determinants of antibody aggregation. Here we review advances in engineering antibody frameworks, domain interfaces, and antigen-binding loops to prevent aggregation of natively and nonnatively folded antibody fragments. We also highlight advances and unmet challenges in developing robust strategies for engineering large, multidomain antibodies to resist aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.