If similar effects were seen in vivo, increased biomechanical stability with screw fixation could decrease the occurrence of complications such as loss of reduction and nonunion.
Clinical relevance is uncertain. In situations with poor tissue quality or concern regarding tension across the repair, consideration should be given to using static knots as opposed to sliding knots when placing mattress stitches.
Guardrail terminals have evolved to the point where they absorb energy while utilizing tension in the rail to countermand the compression. However, non-gating terminals have yet to be developed. In the present study, the possibility of a non-gating guardrail terminal was investigated. Specifically, the combination of lateral and longitudinal forces that produce non-gating performance were determined from computer simulation. Next, a prototype terminal was crash tested at the research team’s laboratory. A terminal head was designed to deform the guardrail, and its internal structure was adjustable to control the longitudinal force. Posts were designed to control lateral forces by modifying their section modulus. This controlled the force at which the posts buckled in response to a collision. A prototype was subjected to two 15° crash tests using an SUV and a small car. In both tests, the kinetic energy of the test vehicle was fully absorbed and the Manual for Assessing Safety Hardware (MASH) criteria would have been met. Neither vehicle passed beyond the terminal head, making these test results the first of their kind.
Bacterial nanocellulose (BNC) is a biopolymer that has been used in a variety of applications ranging from speaker diaphragms to biomedical products. With the exact chemical structure as that produced by plants, BNC is created by microbes like Gluconacetobacter xylinus. One of the unique aspects of BNC is its ability to have a wide variety of mechanical properties while in hydrogel form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.