MicroRNAs (miRNAs) are short non-coding RNAs of cellular1 and viral origin2-7 that post-transcriptionally regulate gene expression through imperfect base pairing to their mRNA targets. Because the recognition sequences of miRNAs for their targets are short and may be discontinuous, bioinformatic prediction of targets is difficult. Here we present an approach to the experimental identification of the mRNA targets of miRNAs encoded by the Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV encodes 17 miRNAs, derived from 12 pre-miRNAs expressed from a single locus during viral latency2,5-10. Our approach is based upon multiple screens that examine small changes in transcript abundance under different conditions of miRNA expression or inhibition, followed by searching the identified transcripts for seed sequence matches. This strategy led to the identification of the Bcl2-associated factor BCLAF1 as a target for miR-K5, and further analysis revealed that several other KSHV miRNAs also target this gene product. Our results support that this type of expression profiling provides a potentially general approach to the identification of miRNA targets.
Noncoding RNAs have substantial effects in host–virus interactions. Circular RNAs (circRNAs) are novel single-stranded noncoding RNAs which can decoy other RNAs or RNA-binding proteins to inhibit their functions. The role of circRNAs is largely unknown in the context of Kaposi’s sarcoma herpesvirus (KSHV). We hypothesized that circRNAs influence viral infection by inhibiting host and/or viral factors. Transcriptome analysis of KSHV-infected primary endothelial cells and a B cell line identified human circRNAs that are differentially regulated upon infection. We confirmed the expression changes with divergent PCR primers and RNase R treatment of specific circRNAs. Ectopic expression of hsa_circ_0001400, a circRNA induced by infection, suppressed expression of key viral latent gene LANA and lytic gene RTA in KSHV de novo infections. Since human herpesviruses express noncoding RNAs like microRNAs, we searched for viral circRNAs encoded in the KSHV genome. We performed circRNA-Seq analysis with RNase R-treated, circRNA-enriched RNA from KSHV-infected cells. We identified multiple circRNAs encoded by the KSHV genome that are expressed in KSHV-infected endothelial cells and primary effusion lymphoma (PEL) cells. The KSHV circRNAs are located within ORFs of viral lytic genes, are up-regulated upon the induction of the lytic cycle, and alter cell growth. Viral circRNAs were also detected in lymph nodes from patients of KSHV-driven diseases such as PEL, Kaposi’s sarcoma, and multicentric Castleman’s disease. We revealed new host–virus interactions of circRNAs: human antiviral circRNAs are activated in response to KSHV infection, and viral circRNA expression is induced in the lytic phase of infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.