Breast and ovarian cancer patients harboring BRCA1/2 germline mutations have clinically benefitted from therapy with PARP inhibitor (PARPi) or platinum compounds, but acquired resistance limits clinical impact. In this study, we investigated the impact of mutations on BRCA1 isoform expression and therapeutic response. Cancer cell lines and tumors harboring mutations in exon 11 of BRCA1 express a BRCA1-Δ11q splice variant lacking the majority of exon 11. The introduction of frameshift mutations to exon 11 resulted in nonsense-mediated mRNA decay of full-length, but not the BRCA1-Δ11q isoform. CRISPR/Cas9 gene editing as well as overexpression experiments revealed that the BRCA1-Δ11q protein was capable of promoting partial PARPi and cisplatin resistance relative to full-length BRCA1, both in vitro and in vivo. Furthermore, spliceosome inhibitors reduced BRCA1-Δ11q levels and sensitized cells carrying exon 11 mutations to PARPi treatment. Taken together, our results provided evidence that cancer cells employ a strategy to remove deleterious germline BRCA1 mutations through alternative mRNA splicing, giving rise to isoforms that retain residual activity and contribute to therapeutic resistance.
Highlights d A Brca1 coiled-coil (CC) mutation results in FA in mice d Brca1 exon 11 coding region is required for DNA end resection d Brca1 CC domain is essential for efficient RAD51 loading d Combining complementary mutant alleles partially restores HR
SUMMARY
BRCA1 functions in homologous recombination (HR) both up- and downstream of DNA end resection. However, in cells with 53BP1 gene knockout (KO), BRCA1 is dispensable for the initiation of resection, but whether BRCA1 activity is entirely redundant after end resection is unclear. Here, we found that 53bp1 KO rescued the embryonic viability of a Brea1ΔC/ΔC mouse model that harbors a stop codon in the coiled-coil domain. However, Brca1ΔC/ΔC;53bp1−/− mice were susceptible to tumor formation, lacked Rad51 foci, and were sensitive to PARP inhibitor (PARPi) treatment, indicative of suboptimal HR. Furthermore, BRCA1 mutant cancer cell lines were dependent on truncated BRCA1 proteins that retained the ability to interact with PALB2 for 53BP1 KO induced RAD51 foci and PARPi resistance. Our data suggest that the overall efficiency of 53BP1 loss of function induced HR may be BRCA1 mutation dependent. In the setting of 53BP1 KO, hypomorphic BRCA1 proteins are active downstream of end resection, promoting RAD51 loading and PARPi resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.