Crimes have been the most dangerous threat to peace, development, human right, social, political and economic stability in Kenya. There is a great need to eradicate crime to facilitate development and counter all vices that are caused by crime. Efficient management of crime requires an adequate understanding of the patterns in which crime occur to put the appropriate measures in place for crime prevention. Crime has been in existence since the beginning of time hence will remain, and one of the solutions is to identify the pattern in which it occurs to prevent or counter it effectively as it occurs. The main objective of the study was to find out how different crimes are related. The study considered a number of data mining techniques which included; clustering, specifically k-means algorithm, mapping and APRIORI algorithm to analyze how different crimes are related and how often they occur. Crime cases were found to be decreasing over the years under study and counties with a high population reported higher number of crimes as compared to those with low population. The study suggested that these crimes could be controlled by directing more resources in the highly populated counties. The study leaves a research gap where the same crime data could be analyzed using time series methods since observed crime offenses are recorded alongside the time they occur.
Statistics is one of the most vibrant disciplines where research is inevitable. Most researches in statistics are concerned with the measurement of values of variables in order to make valid conclusions for decision making. Often, researchers do not use the exact values of the variables since it's difficult to establish the exact value of variables during data collection. This study aimed at using simulation studies to ascertain the power of Simulation Extrapolation (SIMEX) in correcting the bias of coefficients of a logistic regression model with one covariate measured with error. The corrected coefficient values of the model can then be used to predict the exact values of the explanatory variable. The Mean Square Error and the coverage probability were used to test the adequacy of the different model's estimates. The study showed that the use of SIMEX with the quadratic fitting method would give significantly good estimates of the model's predictors' coefficients. For further studies, the researcher recommends the study to be done using other models and with multiple covariates measured with errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.