Since its emergence in Wuhan, China, covid-19 has spread and had a profound effect on the lives and health of people around the globe. As of 4 July 2021, more than 183 million confirmed cases of covid-19 had been recorded worldwide, and 3.97 million deaths. Recent evidence has shown that a range of persistent symptoms can remain long after the acute SARS-CoV-2 infection, and this condition is now coined long covid by recognized research institutes. Studies have shown that long covid can affect the whole spectrum of people with covid-19, from those with very mild acute disease to the most severe forms. Like acute covid-19, long covid can involve multiple organs and can affect many systems including, but not limited to, the respiratory, cardiovascular, neurological, gastrointestinal, and musculoskeletal systems. The symptoms of long covid include fatigue, dyspnea, cardiac abnormalities, cognitive impairment, sleep disturbances, symptoms of post-traumatic stress disorder, muscle pain, concentration problems, and headache. This review summarizes studies of the long term effects of covid-19 in hospitalized and non-hospitalized patients and describes the persistent symptoms they endure. Risk factors for acute covid-19 and long covid and possible therapeutic options are also discussed.
Despite an ever-growing prevalence and increasing economic burden of Alzheimer’s disease (AD) and Parkinson’s disease (PD), recent advances in drug development have only resulted in minimally effective treatment. In AD, along with amyloid and tau phosphorylation, there is an associated increase in inflammation/glial activation, a decrease in synaptic function, an increase in astrocyte activation, and a state of insulin resistance. In PD, along with α-synuclein accumulation, there is associated inflammation, synaptic dysfunction, dopaminergic neuronal loss, and some data to suggest insulin resistance. Therapeutic strategies for neurodegenerative disorders have commonly targeted individual pathological processes. An effective treatment might require either utilization of multiple drugs which target the individual pathological processes which underlie the neurodegenerative disease or the use of a single agent which could influence multiple pathological processes. Insulin and incretins are compounds with multiple effects on neurodegenerative processes. Preclinical studies have demonstrated that GLP-1 receptor agonists reduce neuroinflammation, reduce tau phosphorylation, reduce amyloid deposition, increase synaptic function, and improve memory formation. Incretin mimetics may act through the restoration of insulin signaling pathways, inducing further neuroprotective effects. Currently, phase 2 and phase 3 trials are underway in AD and PD populations. Here, we provide a comprehensive review of the therapeutic potential of incretin mimetics and insulin in AD and PD.
Post mortem neuropathology suggests that astrocyte reactivity may play a significant role in neurodegeneration in Alzheimer’s disease. We explored this in vivo using multimodal PET and MRI imaging. Twenty subjects (11 older, cognitively impaired patients and 9 age-matched healthy controls) underwent brain scanning using the novel reactive astrocyte PET tracer 11C-BU99008, 18F-FDG and 18F-florbetaben PET, and T1-weighted MRI. Differences between cognitively impaired patients and healthy controls in regional and voxel-wise levels of astrocyte reactivity, glucose metabolism, grey matter volume and amyloid load were explored, and their relationship to each other was assessed using Biological Parametric Mapping (BPM). Amyloid beta (Aβ)-positive patients showed greater 11C-BU99008 uptake compared to controls, except in the temporal lobe, whilst further increased 11C-BU99008 uptake was observed in Mild Cognitive Impairment subjects compared to those with Alzheimer’s disease in the frontal, temporal and cingulate cortices. BPM correlations revealed that regions which showed reduced 11C-BU99008 uptake in Aβ-positive patients compared to controls, such as the temporal lobe, also showed reduced 18F-FDG uptake and grey matter volume, although the correlations with 18F-FDG uptake were not replicated in the ROI analysis. BPM analysis also revealed a regionally-dynamic relationship between astrocyte reactivity and amyloid uptake: increased amyloid load in cortical association areas of the temporal lobe and cingulate cortices was associated with reduced11C-BU99008 uptake, whilst increased amyloid uptake in primary motor and sensory areas (in which amyloid deposition occurs later) was associated with increased11C-BU99008 uptake. These novel observations add to the hypothesis that while astrocyte reactivity may be triggered by early Aβ-deposition, sustained pro-inflammatory astrocyte reactivity with greater amyloid deposition may lead to astrocyte dystrophy and amyloid-associated neuropathology such as grey matter atrophy and glucose hypometabolism, although the evidence for glucose hypometabolism here is less strong.
Background Liraglutide is a glucagon‐like peptide‐1 (GLP‐1) analogue licensed for the treatment of type 2 diabetes. Preclinical evidence in transgenic models of Alzheimer’s disease suggests that liraglutide exerts neuroprotective effects by reducing amyloid oligomers, normalising synaptic plasticity and cerebral glucose uptake, and increasing the proliferation of neuronal progenitor cells. Methods ELAD is a 12‐month, multi‐centre, randomised, double‐blind, placebo‐controlled, phase IIb trial of liraglutide in participants with mild to moderate Alzheimer’s dementia, conducted at several centres in the UK – (NCT01843075). [18F]FDG‐PET and MRI brain scans of all patients will be performed at baseline and after 12 months treatment with liraglutide or matching placebo. Once enrolled, all subjects had a neuropsychological battery of tests All scans and tests will be repeated after 12 months. A total of 204 participants were randomised to receive either liraglutide or placebo as a daily subcutaneous injection for 12 months. The primary objective was to evaluate the change in cerebral glucose metabolic rate in the cortical regions (hippocampus, medial temporal lobe, and posterior cingulate) from baseline to 12‐month follow‐up in participants with Alzheimer’s disease receiving treatment with liraglutide compared to those receiving placebo. The key secondary outcomes were the change from baseline to 12 months in z scores for clinical and cognitive measures (Alzheimer’s Disease Assessment Scale – Cognitive Subscale and Executive domain scores of the Neuropsychological Test Battery, Clinical Dementia Rating Sum of Boxes, and Alzheimer’s Disease Cooperative Study – Activities of Daily Living) and the incidence and severity of treatment‐emergent adverse events or clinically important changes in safety assessments. Other secondary outcomes were 12‐month change in magnetic resonance imaging volume, diffusion tensor imaging parameters, and changes in composite scores using support machine vector analysis in the treatment group compared with the placebo group. Results The study demonstrated that liraglutide treated patients performed significantly better than placebo arm in temporal lobe and whole cortical MRI volume and cognitive function measured by ADAS‐EXEC (ADAS‐Cog with Executive domains of the Neuropsychological Test Battery). Conclusion This demonstrates that GLP1 analogues can improve cognitive function and MRI volume in AD subjects and could be a potential treatment for treatment for Alzheimer's
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.