The age-related decline in testosterone biosynthesis in testicular Leydig cells has been well documented, but the mechanisms involved in the decline are not clear. Recent studies have described a cyclooxygenase-2 (COX2)-dependent tonic inhibition of Leydig cell steroidogenesis and expression of the steroidogenic acute regulatory protein (StAR). The present study was conducted to determine whether COX2 protein increases with age in rat Leydig cells and whether COX2 plays a role in the age-related decline in testosterone biosynthesis. Our results indicate that from 3 months of age to 30 months, COX2 protein in aged rat Leydig cells increased by 346% over that of young Leydig cells, StAR protein decreased to 33%, and blood testosterone concentration and testosterone biosynthesis in Leydig cells decreased to 41 and 33%, respectively. Further experiments demonstrated that overexpressing COX2 in MA-10 mouse Leydig cells inhibited StAR gene expression and steroidogenesis and that the inhibitory effects of COX2 could be reversed by blocking COX2 activity. Notably, incubation of aged Leydig cells with the COX2 inhibitor NS398 enhanced their testosterone biosynthesis. Blood testosterone concentrations in aged rats fed the COX2 inhibitor DFU, at doses of 5, 10, 15, and 20 mg/kg body weight per day were increased by 15, 23, 56, and 120%, respectively, over the levels in the rats receiving no DFU. The present study suggests a novel mechanism in male aging involving COX2 and a potential application of the mechanism to delay the age-related decline in testosterone biosynthesis.
The experiments test the hypothesis that fladrenergic receptor is an independent unit that can be transferred from one adenylate cyclase [ATP pyrophosphate-lyase
An individual’s genetic makeup plays an important role in determining susceptibility to cognitive aging. Identifying the specific genes that contribute to cognitive aging may aid in early diagnosis of at-risk patients, as well as identify novel therapeutics targets to treat or prevent development of symptoms. Challenges to identifying these specific genes in human studies include complex genetics, difficulty in controlling environmental factors, and limited access to human brain tissue. Here, we identify Hp1bp3 as a novel modulator of cognitive aging using a genetically diverse population of mice, and confirm that HP1BP3 protein levels are significantly reduced in the hippocampi of cognitively impaired elderly humans relative to cognitively intact controls. Deletion of functional Hp1bp3 in mice recapitulates memory deficits characteristic of aged impaired mice and humans, further supporting the idea that Hp1bp3 and associated molecular networks are modulators of cognitive aging. Overall, our results suggest Hp1bp3 may serve as a potential target against cognitive aging and demonstrate the utility of genetically diverse animal models for the study of complex human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.