Characterizing locomotor dynamics is essential for understanding the neuromuscular control of locomotion. In particular, quantifying dynamic stability during walking is important for assessing people who have a greater risk of falling. However, traditional biomechanical methods of defining stability have not quantified the resistance of the neuromuscular system to perturbations, suggesting that more precise definitions are required. For the present study, average maximum finite-time Lyapunov exponents were estimated to quantify the local dynamic stability of human walking kinematics. Local scaling exponents, defined as the local slopes of the correlation sum curves, were also calculated to quantify the local scaling structure of each embedded time series. Comparisons were made between overground and motorized treadmill walking in young healthy subjects and between diabetic neuropathic (NP) patients and healthy controls (CO) during overground walking. A modification of the method of surrogate data was developed to examine the stochastic nature of the fluctuations overlying the nominally periodic patterns in these data sets. Results demonstrated that having subjects walk on a motorized treadmill artificially stabilized their natural locomotor kinematics by small but statistically significant amounts. Furthermore, a paradox previously present in the biomechanical literature that resulted from mistakenly equating variability with dynamic stability was resolved. By slowing their self-selected walking speeds, NP patients adopted more locally stable gait patterns, even though they simultaneously exhibited greater kinematic variability than CO subjects. Additionally, the loss of peripheral sensation in NP patients was associated with statistically significant differences in the local scaling structure of their walking kinematics at those length scales where it was anticipated that sensory feedback would play the greatest role. Lastly, stride-to-stride fluctuations in the walking patterns of all three subject groups were clearly distinguishable from linearly autocorrelated Gaussian noise. As a collateral benefit of the methodological approach taken in this study, some of the first steps at characterizing the underlying structure of human locomotor dynamics have been taken. Implications for understanding the neuromuscular control of locomotion are discussed. (c) 2000 American Institute of Physics.
This study quantified the relationships between local dynamic stabiliht and variabilitr during continuous overground and treadmill walking. Stride-to-stride standard deviations were computed from temporal and kinematic data. Marimum finite-time Lyapunov exponents were estimated to quantify local dynamic stability. Local stability of gait kinematics was shown to be achieved over multiple consecutive strides. Traditional measures of variability poorly predicted local stability. Treadmill walking was associated with significant changes in both variability and local stability. Thus, motorized treadmills may produce misleading or erroneous results in situations where changes in neuromuscular control are likely to affect the variability and/or stability of locomotion.
It is widely accepted that humans and animals minimize energetic cost while walking. While such principles predict average behavior, they do not explain the variability observed in walking. For robust performance, walking movements must adapt at each step, not just on average. Here, we propose an analytical framework that reconciles issues of optimality, redundancy, and stochasticity. For human treadmill walking, we defined a goal function to formulate a precise mathematical definition of one possible control strategy: maintain constant speed at each stride. We recorded stride times and stride lengths from healthy subjects walking at five speeds. The specified goal function yielded a decomposition of stride-to-stride variations into new gait variables explicitly related to achieving the hypothesized strategy. Subjects exhibited greatly decreased variability for goal-relevant gait fluctuations directly related to achieving this strategy, but far greater variability for goal-irrelevant fluctuations. More importantly, humans immediately corrected goal-relevant deviations at each successive stride, while allowing goal-irrelevant deviations to persist across multiple strides. To demonstrate that this was not the only strategy people could have used to successfully accomplish the task, we created three surrogate data sets. Each tested a specific alternative hypothesis that subjects used a different strategy that made no reference to the hypothesized goal function. Humans did not adopt any of these viable alternative strategies. Finally, we developed a sequence of stochastic control models of stride-to-stride variability for walking, based on the Minimum Intervention Principle. We demonstrate that healthy humans are not precisely “optimal,” but instead consistently slightly over-correct small deviations in walking speed at each stride. Our results reveal a new governing principle for regulating stride-to-stride fluctuations in human walking that acts independently of, but in parallel with, minimizing energetic cost. Thus, humans exploit task redundancies to achieve robust control while minimizing effort and allowing potentially beneficial motor variability.
Detrended fluctuation analyses (DFA) have been widely used to quantify stride-to-stride temporal correlations in human walking. However, significant questions remain about how to properly interpret these statistical properties physiologically. Here, we propose a simpler and more parsimonious interpretation than previously suggested. Seventeen young healthy adults walked on a motorized treadmill at each of 5 speeds. Time series of consecutive stride lengths (SL) and stride times (ST) were recorded. Time series of stride speeds were computed as SS = SL/ST. SL and ST exhibited strong statistical persistence (α ≫ 0.5). However, SS consistently exhibited slightly antipersistent (α < 0.5) dynamics. We created three surrogate data sets to directly test specific hypotheses about possible control processes that might have generated these time series. Subjects did not choose consecutive SL and ST according to either independently uncorrelated or statistically independent auto-regressive moving-average (ARMA) processes. However, cross-correlated surrogates, which preserved both the auto-correlation and cross-correlation properties of the original SL and ST time series successfully replicated the means, standard deviations, and (within computational limits) DFA α exponents of all relevant gait variables. These results suggested that subjects controlled their movements according to a two-dimensional ARMA process that specifically sought to minimize stride-to-stride variations in walking speed (SS). This interpretation fully agrees with experimental findings and also with the basic definitions of statistical persistence and anti-persistence. Our findings emphasize the necessity of interpreting DFA α exponents within the context of the control processes involved and the inherent biomechanical and neuro-motor redundancies available.
A fundamental question in human motor neuroscience is to determine how the nervous system generates goal-directed movements despite inherent physiological noise and redundancy. Walking exhibits considerable variability and equifinality of task solutions. Existing models of bipedal walking do not yet achieve both continuous dynamic balance control and the equifinality of foot placement humans exhibit. Appropriate computational models are critical to disambiguate the numerous possibilities of how to regulate stepping movements to achieve different walking goals. Here, we extend a theoretical and computational Goal Equivalent Manifold (GEM) framework to generate predictive models, each posing a different experimentally testable hypothesis. These models regulate stepping movements to achieve any of three hypothesized goals, either alone or in combination: maintain lateral position, maintain lateral speed or “heading”, and/or maintain step width. We compared model predictions against human experimental data. Uni-objective control models demonstrated clear redundancy between stepping variables, but could not replicate human stepping dynamics. Most multi-objective control models that balanced maintaining two of the three hypothesized goals also failed to replicate human stepping dynamics. However, multi-objective models that strongly prioritized regulating step width over lateral position did successfully replicate all of the relevant step-to-step dynamics observed in humans. Independent analyses confirmed this control was consistent with linear error correction and replicated step-to-step dynamics of individual foot placements. Thus, the regulation of lateral stepping movements is inherently multi-objective and balances task-specific trade-offs between competing task goals. To determine how people walk in their environment requires understanding both walking biomechanics and how the nervous system regulates movements from step-to-step. Analogous to mechanical “templates” of locomotor biomechanics, our models serve as “control templates” for how humans regulate stepping movements from each step to the next. These control templates are symbiotic with well-established mechanical templates, providing complimentary insights into walking regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.