Inflammasomes activate caspase-1, initiating a lytic form of programmed cell death termed pyroptosis, which is an important innate immune defense mechanism against intracellular infections. We recently demonstrated in a mouse infection model of pyroptosis that instead of releasing bacteria into the extracellular space, bacteria remain trapped within the pyroptotic cell corpse, termed the pore-induced intracellular trap (PIT). This trapping mediates efferocytosis of the PIT, with its associated bacteria, by neutrophils; bacteria are subsequently killed via neutrophil ROS. Using this pyroptosis model, we now show that the pro-inflammatory cytokines IL-1β and IL-18 and inflammatory lipid mediators termed eicosanoids are required for effective clearance of bacteria downstream of pyroptosis. We further show that IL-1β, IL-18, and eicosanoids affect this in part by mediating neutrophil recruitment to the PIT. This is in addition to our prior findings that complement is also important to attract neutrophils. Thus, the PIT initiates a robust and coordinated innate immune response involving multiple mediators that attract neutrophils to efferocytose the PIT and its entrapped bacteria.
Surfactant-associated protein A (SP-A) is involved in surfactant homeostasis and host defense in the lung. We have previously demonstrated that SP-A specifically binds to and enhances the ingestion of bacillus Calmette-Guerin (BCG) organisms by macrophages. In the current study, we investigated the effect of SP-A on the generation of inflammatory mediators induced by BCG and the subsequent fate of ingested BCG organisms. Rat macrophages were incubated with BCG in the presence and absence of SP-A. Noningested BCG organisms were removed, and the release of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide were measured at varying times. TNF-alpha and nitric oxide production induced by BCG were enhanced by SP-A. In addition, SP-A enhanced the BCG-induced increase in the level of inducible nitric oxide synthase protein. Addition of antibodies directed against SPR210, a specific macrophage SP-A receptor, inhibited the SP-A-enhanced mediator production. BCG in the absence of SP-A showed increased growth over a 5-day period, whereas inclusion of SP-A dramatically inhibited BCG growth. Inhibition of nitric oxide production blocked BCG killing in the presence and absence of SP-A. These results demonstrate that ingestion of SP-A-BCG complexes by rat macrophages leads to production of inflammatory mediators and increased mycobacterial killing.
Resident alveolar macrophages play a key role in the initial defense against inhaled pathogens. Surface molecules bind opsonized as well as nonopsonized microbes and mediate their internalization by the macrophage. The recent discovery that specific C-type lectins can bind to the surface of a wide range of pathogens has led to the hypothesis that these lectins are involved in the initial phases of microbe recognition by the macrophage. Studies in our laboratory focus on the role of the lung-specific lectin surfactant associated protein A (SP-A) in host defense against pulmonary pathogens. SP-A contains a carbohdyrate recognition domain that appears to bind specifically to exposed carbohydrate residues on the surface of microorganisms. This lectin-microorganism interaction leads to entry of specific pathogens into macrophages and activation of intracellular pathways, resulting in the production of antimicrobial mediators such as nitric oxide. Many studies, including those involving SP-A-deficient mice, underscore the importance of this protein in pulmonary innate immunity. However, the intramacrophage mechanisms underlying the effects of SP-A are still unclear. This article describes our current knowledge of SP-A and its interactions with immune cells and pathogens with a focus on recent findings from our laboratory regarding SP-A interactions with mycobacteria.
Background: Surfactant protein A (SP-A) is a C-type lectin involved in surfactant homeostasis as well as host defense in the lung. We have recently demonstrated that SP-A enhances the killing of bacillus Calmette-Guerin (BCG) by rat macrophages through a nitric oxide-dependent pathway. In the current study we have investigated the role of tyrosine kinases and the downstream mitogenactivated protein kinase (MAPK) family, and the transcription factor NFκB in mediating the enhanced signaling in response to BCG in the presence of SP-A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.