Monozygotic (MZ) or “identical” twins have been widely studied to dissect the relative contributions of genetics and environment in human diseases. In multiple sclerosis (MS), an autoimmune demyelinating disease and common cause of neurodegeneration and disability in young adults, disease discordance in MZ twins has been interpreted to indicate environmental importance in its pathogenesis1–8. However, genetic and epigenetic differences between MZ twins have been described, challenging the accepted experimental paradigm in disambiguating effects of nature and nurture.9–12 Here, we report the genome sequences of one MS-discordant MZ twin pair and messenger RNA (mRNA) transcriptome and epigenome sequences of CD4+ lymphocytes from three MS-discordant, MZ twin pairs. No reproducible differences were detected between co-twins among ~3.6 million single nucleotide polymorphisms (SNPs) or ~0.2 million insertion-deletion polymorphisms (indels). Nor were any reproducible differences observed between siblings of the three twin pairs in HLA haplotypes, confirmed MS-susceptibility SNPs, copy number variations, mRNA and genomic SNP and indel genotypes, or expression of ~19,000 genes in CD4+ T cells. Only two to 176 differences in methylation of ~2 million CpG dinucleotides were detected between siblings of the three twin pairs, in contrast to ~800 methylation differences between T cells of unrelated individuals and several thousand differences between tissues or normal and cancerous tissues. In the first systematic effort to estimate sequence variation among MZ co-twins, we did not find evidence for genetic, epigenetic or transcriptome differences that explained disease discordance. These are the first female, twin and autoimmune disease individual genome sequences reported.
ClinicalTrials.gov Identifier: NCT00114140.
PURPOSE NRG Oncology/RTOG 9802 (ClinicalTrials.gov Identifier: NCT00003375 ) is a practice-changing study for patients with WHO low-grade glioma (LGG, grade II), as it was the first to demonstrate a survival benefit of adjuvant chemoradiotherapy over radiotherapy. This post hoc study sought to determine the prognostic and predictive impact of the WHO-defined molecular subgroups and corresponding molecular alterations within NRG Oncology/RTOG 9802. METHODS IDH1/2 mutations were determined by immunohistochemistry and/or deep sequencing. A custom Ion AmpliSeq panel was used for mutation analysis. 1p/19q codeletion and MGMT promoter methylation were determined by copy-number arrays and/or Illumina 450K array, respectively. Progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan-Meier method. Hazard ratios (HRs) were calculated using the Cox proportional hazard model and tested using the log-rank test. Multivariable analyses (MVAs) were performed incorporating treatment and common prognostic factors as covariates. RESULTS Of the eligible patients successfully profiled for the WHO-defined molecular groups (n = 106/251), 26 (24%) were IDH-wild type, 43 (41%) were IDH-mutant/non-codeleted, and 37(35%) were IDH-mutant/codeleted. MVAs demonstrated that WHO subgroup was a significant predictor of PFS after adjustment for clinical variables and treatment. Notably, treatment with postradiation chemotherapy (PCV; procarbazine, lomustine (CCNU), and vincristine) was associated with longer PFS (HR, 0.32; P = .003; HR, 0.13; P < .001) and OS (HR, 0.38; P = .013; HR, 0.21; P = .029) in the IDH-mutant/non-codeleted and IDH-mutant/codeleted subgroups, respectively. In contrast, no significant difference in either PFS or OS was observed with the addition of PCV in the IDH-wild-type subgroup. CONCLUSION This study is the first to report the predictive value of the WHO-defined diagnostic classification in a set of uniformly treated patients with LGG in a clinical trial. Importantly, this post hoc analysis supports the notion that patients with IDH-mutant high-risk LGG regardless of codeletion status receive benefit from the addition of PCV.
Objectives To determine the relationship between mismatch repair (MMR) classification and clinicopathologic features including tumor volume, and explore outcomes by MMR class in a contemporary cohort. Methods Single institution cohort evaluating MMR classification for endometrial cancers (EC). MMR immunohistochemistry (IHC) +/− microsatellite instability (MSI) testing and reflex MLH1 methylation testing was performed. Tumors with MMR abnormalities by IHC or MSI and MLH1 methylation were classified as epigenetic MMR deficiency while those without MLH1 methylation were classified as probable MMR mutations. Clinicopathologic characteristics were analyzed. Results 466 endometrial cancers were classified; 75% as MMR proficient, 20% epigenetic MMR defects, and 5% as probable MMR mutations. Epigenetic MMR defects were associated with advanced stage, higher grade, presence of lymphovascular space invasion, and older age. MMR class was significantly associated with tumor volume, an association not previously reported. The epigenetic MMR defect tumors median volume was 10,220mm3 compared to 3,321 mm3 and 2,846mm3, for MMR proficient and probable MMR mutations respectively (p<.0001). Higher tumor volume was associated with lymph node involvement. Endometrioid EC cases with epigenetic MMR defects had significantly reduced recurrence-free survival (RFS). Among advanced stage (III/IV) endometrioid EC the epigenetic MMR defect group was more likely to recur compared to the MMR proficient group (47.7% vs 3.4%) despite receiving similar adjuvant therapy. In contrast, there was no difference in the number of early stage recurrences for the different MMR classes. Conclusions MMR testing that includes MLH1 methylation analysis defines a subset of tumors that have worse prognostic features and reduced RFS.
Objective Multiple sclerosis (MS) is a multifactorial neurologic disease characterized by modest but tractable heritability. Genome Wide Association Studies (GWAS) have identified and/or validated multiple polymorphisms in approximately 16 genes associated with susceptibility. We aimed at investigating the aggregation of genetic MS-risk markers in individuals by comparing multi and single-case families. Methods A weighted log-additive integrative approach termed MS Genetic Burden (MSGB) was used to account for the well-established genetic variants from previous association studies and meta-analyses. The corresponding genetic burden and its transmission was analyzed in 1213 independent MS families (810 sporadic and 403 multi-case families). Results MSGB analysis demonstrated a higher aggregation of susceptibility variants in multi-case, compared to sporadic MS families. In addition, the aggregation of non-MHC SNPs depended neither on gender nor on the presence or absence of HLA-DRB1*15:01 alleles. Interestingly, while a greater MSGB in siblings of MS patients was associated with an increased risk of MS (OR=2.1, p=0.001), ROC curves of MSGB differences between probands and sibs (AUROC 0.57 [0.53; 0.61]) show that case-control status prediction of MS cannot be achieved with the currently available genetic data. Interpretation The primary interest in the MSGB concept resides in its capacity to integrate cumulative genetic contributions to MS risk. This analysis underlines the high variability of family load with known common variants. This novel approach can be extended to other genetically complex diseases. Despite the emphasis in assembling large case-control datasets, multigenerational, multi-affected families remain an invaluable resource for advancing the understanding of the genetic architecture of complex traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.