The formation of large-scale brain networks, and their continual refinement, represent crucial developmental processes that can drive individual differences in cognition and which are associated with multiple neurodevelopmental conditions. But how does this organization arise, and what mechanisms drive diversity in organization? We use generative network modeling to provide a computational framework for understanding neurodevelopmental diversity. Within this framework macroscopic brain organization, complete with spatial embedding of its organization, is an emergent property of a generative wiring equation that optimizes its connectivity by renegotiating its biological costs and topological values continuously over time. The rules that govern these iterative wiring properties are controlled by a set of tightly framed parameters, with subtle differences in these parameters steering network growth towards different neurodiverse outcomes. Regional expression of genes associated with the simulations converge on biological processes and cellular components predominantly involved in synaptic signaling, neuronal projection, catabolic intracellular processes and protein transport. Together, this provides a unifying computational framework for conceptualizing the mechanisms and diversity in neurodevelopment, capable of integrating different levels of analysis—from genes to cognition.
We used two simple unsupervised machine learning techniques to identify differential trajectories of change in children who undergo intensive working memory (WM) training. We used self‐organizing maps (SOMs)—a type of simple artificial neural network—to represent multivariate cognitive training data, and then tested whether the way tasks are represented changed as a result of training. The patterns of change we observed in the SOM weight matrices implied that the processes drawn upon to perform WM tasks changed following training. This was then combined with K ‐means clustering to identify distinct groups of children who respond to the training in different ways. Firstly, the K ‐means clustering was applied to an independent large sample ( N = 616, M age = 9.16 years, range = 5.16–17.91 years) to identify subgroups. We then allocated children who had been through cognitive training ( N = 179, M age = 9.00 years, range = 7.08–11.50 years) to these same four subgroups, both before and after their training. In doing so, we were able to map their improvement trajectories. Scores on a separate measure of fluid intelligence were predictive of a child's improvement trajectory. This paper provides an alternative approach to analysing cognitive training data that go beyond considering changes in individual tasks. This proof‐of‐principle demonstrates a potentially powerful way of distinguishing task‐specific from domain‐general changes following training and of establishing different profiles of response to training.
Background: Behavioural and language difficulties co-occur in multiple neurodevelopmental conditions. Our understanding of these problems has arguably been slowed by an overreliance on study designs that compare diagnostic groups and fail to capture the overlap across different neurodevelopmental disorders and the heterogeneity within them. Methods: We recruited a large transdiagnostic cohort of children with complex needs (N = 805) to identify distinct subgroups of children with common profiles of behavioural and language strengths and difficulties. We then investigated whether and how these data-driven groupings could be distinguished from a comparison sample (N = 158) on measures of academic and socioemotional functioning and patterns of global and local white matter connectome organisation. Academic skills were assessed via standardised measures of reading and maths. Socioemotional functioning was captured by the parent-rated version of the Strengths and Difficulties Questionnaire. Results: We identified three distinct subgroups of children, each with different levels of difficulties in structural language, pragmatic communication, and hot and cool executive functions. All three subgroups struggled with academic and socioemotional skills relative to the comparison sample, potentially representing three alternative but related developmental pathways to difficulties in these areas. The children with the weakest language skills had the most widespread difficulties with learning, whereas those with more pronounced difficulties with hot executive skills experienced the most severe difficulties in the socioemotional domain. Each data-driven subgroup could be distinguished from the comparison sample based on both shared and subgroup-unique patterns of neural white matter organisation. Children with the most pronounced deficits in language, cool executive, or hot executive function were differentiated from the comparison sample by altered connectivity in predominantly thalamocortical, temporal-parietal-occipital, and frontostriatal circuits, respectively. Conclusions: These findings advance our understanding of commonly co-morbid behavioural and language problems and their relationship to behavioural outcomes and neurobiological substrates.
Extended practice on a particular cognitive task can boost the performance of other tasks, even though they themselves have not been practiced. This transfer of benefits appears to be specific, occurring most when tasks are very similar to those being trained. But what type of similarity is most important for predicting transfer? This question is addressed with a tightly controlled randomised design, with a relatively large sample (N=175) and an adaptive control group. We created a hierarchical set of nested assessment tasks. Participants then trained on two of the tasks: one was relatively ‘low’ in the hierarchy requiring just simultaneous judgments of shapes’ spikiness, whereas the other was relatively ‘high’ requiring delayed judgments of shapes’ spikiness or number of spikes in a switching paradigm. Using the full complement of nested tasks before and after training we could then test whether and how these ‘low’ and ‘high’ training effects cascade through the hierarchy. For both training groups, relative to the control, whether or not an assessment task shared a single specific feature was the best predictor of transfer patterns. For the lower-level training group, the overall proportion of feature overlap also significantly predicted transfer, but the same was not true for the higher-level training group. Finally, pre-training between-task correlations were not predictive of the pattern of transfer for either group. Together these findings provide an experimental exploration of the specificity of transfer, and establish the nature of task overlap that is crucial for the transfer of performance improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.