Background-Although T-wave alternans has been closely associated with vulnerability to ventricular arrhythmias, the cellular processes underlying T-wave alternans and their role, if any, in the mechanism of reentry remain unclear. Methods and Results-T-wave alternans on the surface ECG was elicited in 8 Langendorff-perfused guinea pig hearts during fixed-rate pacing while action potentials were recorded simultaneously from 128 epicardial sites with voltage-sensitive dyes. Alternans of the repolarization phase of the action potential was observed above a critical threshold heart rate (HR) (209Ϯ46 bpm) that was significantly lower (by 57Ϯ36 bpm) than the HR threshold for alternation of action potential depolarization. The magnitude (range, 2.7 to 47.0 mV) and HR threshold (range, 171 to 272 bpm) of repolarization alternans varied substantially between cells across the epicardial surface. T-wave alternans on the surface ECG was explained primarily by beat-to-beat alternation in the time course of cellular repolarization. Above a critical HR, membrane repolarization alternated with the opposite phase between neighboring cells (ie, discordant alternans), creating large spatial gradients of repolarization. In the presence of discordant alternans, a small acceleration of pacing cycle length produced a characteristic sequence of events: (1) unidirectional block of an impulse propagating against steep gradients of repolarization, (2) reentrant propagation, and (3) the initiation of ventricular fibrillation. Conclusions-Repolarization alternans at the level of the single cell accounts for T-wave alternans on the surface ECG.Discordant alternans produces spatial gradients of repolarization of sufficient magnitude to cause unidirectional block and reentrant ventricular fibrillation. These data establish a mechanism linking T-wave alternans of the ECG to the pathogenesis of sudden cardiac death. (Circulation. 1999;99:1385-1394.)
Previously, using an animal model of T-wave alternans in structurally normal myocardium, we demonstrated that repolarization can alternate with opposite phase between neighboring myocytes (ie, discordant alternans), causing spatial dispersions of repolarization that form the substrate for functional block and reentrant ventricular fibrillation (VF). However, the mechanisms responsible for cellular discordant alternans and its electrocardiographic manifestation (ie, T-wave alternans) in patients with structural heart disease are unknown. We hypothesize that electrotonic uncoupling between neighboring regions of cells by a structural barrier (SB) is a mechanism for discordant alternans. Using voltage-sensitive dyes, ventricular action potentials were recorded from 26 Langendorff-perfused guinea pig hearts in the absence (ie, control) and presence of an insulating SB produced by an epicardial laser lesion. Quantitative analysis of magnitude and phase of cellular alternans revealed that in controls, action potential duration alternated in phase at all ventricular sites above a critical heart rate (269+/-17 bpm), ie, concordant alternans. Also, above a faster critical heart rate threshold (335+/-24 bpm), action potential duration alternated with opposite phase between sites, ie, discordant alternans. In contrast, only discordant but not concordant alternans was observed in 80% of hearts with the SB, and discordant alternans always occurred at a significantly slower heart rate (by 68+/-28 bpm) compared with controls. Therefore, the SB had a major effect on the alternans-heart rate relation, which served to facilitate the development of discordant alternans. Whether a SB was present or not, discordant alternans produced considerable increases (by approximately 170%) in the maximum spatial gradient of repolarization, which in turn formed the substrate for unidirectional block and reentry. However, by providing a structural anchor for stable reentry, discordant alternans in the presence of a SB led most often to sustained monomorphic ventricular tachycardia rather than to VF, whereas in the absence of a SB discordant alternans caused VF. SBs facilitate development of discordant alternans between cells with different ionic properties by electrotonically uncoupling neighboring regions of myocardium. This may explain why arrhythmia-prone patients with structural heart disease exhibit T-wave alternans at lower heart rates. These data also suggest a singular mechanism by which T-wave alternans forms a substrate for initiation of both VF and sustained monomorphic ventricular tachycardia.
We provide direct experimental evidence that multiple wavelengths are present even within a relatively simple reentrant circuit. Abrupt changes in loading during wave-front pivoting, rather than membrane ionic properties or fiber structure, were a major determinant of lambda and, therefore, may play an important role in the stability of reentry.
We previously demonstrated that transient stromal cell-derived factor-1 alpha (SDF-1) improved cardiac function when delivered via cell therapy in ischemic cardiomyopathy at a time remote from acute myocardial infarction (MI) rats. We hypothesized that non-viral gene transfer of naked plasmid DNA-expressing hSDF-1 could similarly improve cardiac function. To optimize plasmid delivery, we tested SDF-1 and luciferase plasmids driven by the cytomegalovirus (CMV) promoter with (pCMVe) or without (pCMV) translational enhancers or α myosin heavy chain (pMHC) promoter in a rodent model of heart failure. In vivo expression of pCMVe was 10-fold greater than pCMV and pMHC expression and continued over 30 days. We directly injected rat hearts with SDF-1 plasmid 1 month after MI and assessed heart function. At 4 weeks after plasmid injection, we observed a 35.97 and 32.65% decline in fractional shortening (FS) in control (saline) animals and pMHC-hSDF1 animals, respectively, which was sustained to 8 weeks. In contrast, we observed a significant 24.97% increase in animals injected with the pCMVe-hSDF1 vector. Immunohistochemistry of cardiac tissue revealed a significant increase in vessel density in the hSDF-1-treated animals compared with control animals. Increasing SDF-1 expression promoted angiogenesis and improved cardiac function in rats with ischemic heart failure along with evidence of scar remodeling with a trend toward decreased myocardial fibrosis. These data demonstrate that stand-alone non-viral hSDF-1 gene transfer is a strategy for improving cardiac function in ischemic cardiomyopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.