Abstract. Seasonal biomass burning (BB) from June to October in central and southern Africa leads to absorbing aerosols being transported over the South Atlantic Ocean every year and contributes significantly to the regional climate forcing. The vertical distribution of submicron aerosols and their properties were characterized over the remote southeast Atlantic, using airborne in situ measurements made during the CLoud-Aerosol-Radiation Interactions and Forcing for Year 2017 (CLARIFY-2017) campaign. BB aerosols emitted from flaming-controlled fires were intensively observed in the region surrounding Ascension Island, in the marine boundary layer (MBL) and free troposphere (FT) up to 5 km. We show that the aerosols had undergone a significant ageing process during > 7 d transit from source, as indicated by the highly oxidized organic aerosol. The highly aged BB aerosols in the far-field CLARIFY region were also especially rich in black carbon (BC), with relatively low single-scattering albedos (SSAs), compared with those from other BB transported regions. The column-weighted dry SSAs during CLARIFY were observed to be 0.85, 0.84 and 0.83 at 405, 550 and 658 nm respectively. We also found significant vertical variation in the dry SSA, as a function of relative chemical composition and size. The lowest SSA in the column was generally in the low FT layer around 2000 m altitude (averages: 0.82, 0.81 and 0.79 at 405, 550 and 658 nm). This finding is important since it means that BB aerosols across the southeast Atlantic region are more absorbing than currently represented in climate models, implying that the radiative forcing from BB may be more strongly positive than previously thought. Furthermore, in the FT, average SSAs at 405, 550 and 658 nm increased to 0.87, 0.86 and 0.85 with altitude up to 5 km. This was associated with an enhanced inorganic nitrate mass fraction and aerosol size, likely resulting from increased partitioning of ammonium nitrate to the existing particles at higher altitude with lower temperature and higher relative humidity. After entrainment into the boundary layer (BL), aerosols were generally smaller in dry size than in the FT and had a larger fraction of scattering material with resultant higher average dry SSA, mostly due to marine emissions and aerosol removal by drizzle. In the BL, the SSA decreased from the surface to the BL top, with the highest SSA in the column observed near the surface. Our results provide unique observational constraints on aerosol parameterizations used in modelling regional radiation interactions over this important region. We recommend that future work should consider the impact of this vertical variability on climate models.
We find that summer methane (CH4) release from seabed sediments west of Svalbard substantially increases CH4 concentrations in the ocean but has limited influence on the atmospheric CH4 levels. Our conclusion stems from complementary measurements at the seafloor, in the ocean, and in the atmosphere from land‐based, ship and aircraft platforms during a summer campaign in 2014. We detected high concentrations of dissolved CH4 in the ocean above the seafloor with a sharp decrease above the pycnocline. Model approaches taking potential CH4 emissions from both dissolved and bubble‐released CH4 from a larger region into account reveal a maximum flux compatible with the observed atmospheric CH4 mixing ratios of 2.4–3.8 nmol m−2 s−1. This is too low to have an impact on the atmospheric summer CH4 budget in the year 2014. Long‐term ocean observatories may shed light on the complex variations of Arctic CH4 cycles throughout the year.
Isotopic data provide powerful constraints on regional and global methane emissions and their source profiles. However, inverse modeling of spatially resolved methane flux is currently constrained by a lack of information on the variability of source isotopic signatures. In this study, isotopic signatures of emissions in the Fennoscandian Arctic have been determined in chambers over wetland, in the air 0.3 to 3 m above the wetland surface and by aircraft sampling from 100 m above wetlands up to the stratosphere. Overall, the methane flux to atmosphere has a coherent δ 13 C isotopic signature of À71 ± 1‰, measured in situ on the ground in wetlands. This is in close agreement with δ 13 C isotopic signatures of local and regional methane increments measured by aircraft campaigns flying through air masses containing elevated methane mole fractions. In contrast, results from wetlands in Canadian boreal forest farther south gave isotopic signatures of À67 ± 1‰. Wetland emissions dominate the local methane source measured over the European Arctic in summer. Chamber measurements demonstrate a highly variable methane flux and isotopic signature, but the results from air sampling within wetland areas show that emissions mix rapidly immediately above the wetland surface and methane emissions reaching the wider atmosphere do indeed have strongly coherent C isotope signatures. The study suggests that for boreal wetlands (>60°N) global and regional modeling can use an isotopic signature of À71‰ to apportion sources more accurately, but there is much need for further measurements over other wetlands regions to verify this.
This paper describes the development of a new sampling and measurement method to infer methane flux using proxy measurements of CO concentration and wind data recorded by Unmanned Aerial Systems (UAS). The flux method described and trialed here is appropriate to the spatial scale of landfill sites and analogous greenhouse gas emission hotspots, making it an important new method for low-cost and rapid case study quantification of fluxes from currently uncertain (but highly important) greenhouse gas sources. We present a case study using these UAS-based measurements to derive instantaneous methane fluxes from a test landfill site in the north of England using a mass balance model tailored for UAS sampling and co-emitted CO concentration as a methane-emission proxy. Methane flux (and flux uncertainty) during two trials on 27 November 2014 and 5 March 2015, were found to be 0.140 kg s (±61% at 1σ), and 0.050 kg s (±54% at 1σ), respectively. Uncertainty contributing to the flux was dominated by ambient variability in the background (inflow) concentration (>40%) and wind speed (>10%); with instrumental error contributing only ∼1-2%. The approach described represents an important advance concerning the challenging problem of greenhouse gas hotspot flux calculation, and offers transferability to a wide range of analogous environments. This new measurement solution could add to a toolkit of approaches to better validate source-specific greenhouse emissions inventories - an important new requirement of the UNFCCC COP21 (Paris) climate change agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.