Organic aerosols (OA) in Pasadena are characterized using multiple measurements from the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. Five OA components are identified using positive matrix factorization including hydrocarbon‐like OA (HOA) and two types of oxygenated OA (OOA). The Pasadena OA elemental composition when plotted as H : C versus O : C follows a line less steep than that observed for Riverside, CA. The OOA components from both locations follow a common line, however, indicating similar secondary organic aerosol (SOA) oxidation chemistry at the two sites such as fragmentation reactions leading to acid formation. In addition to the similar evolution of elemental composition, the dependence of SOA concentration on photochemical age displays quantitatively the same trends across several North American urban sites. First, the OA/ΔCO values for Pasadena increase with photochemical age exhibiting a slope identical to or slightly higher than those for Mexico City and the northeastern United States. Second, the ratios of OOA to odd‐oxygen (a photochemical oxidation marker) for Pasadena, Mexico City, and Riverside are similar, suggesting a proportional relationship between SOA and odd‐oxygen formation rates. Weekly cycles of the OA components are examined as well. HOA exhibits lower concentrations on Sundays versus weekdays, and the decrease in HOA matches that predicted for primary vehicle emissions using fuel sales data, traffic counts, and vehicle emission ratios. OOA does not display a weekly cycle—after accounting for differences in photochemical aging —which suggests the dominance of gasoline emissions in SOA formation under the assumption that most urban SOA precursors are from motor vehicles.
Biomass burning (BB) is a major global source of trace gases and particles. Accurately representing the production and evolution of these emissions is an important goal for atmospheric chemical transport models. We measured a suite of gases and aerosols emitted from an 81 hectare prescribed fire in chaparral fuels on the central coast of California, US on 17 November 2009. We also measured physical and chemical changes that occurred in the isolated downwind plume in the first ~4 h after emission. The measurements were carried out onboard a Twin Otter aircraft outfitted with an airborne Fourier transform infrared spectrometer (AFTIR), aerosol mass spectrometer (AMS), single particle soot photometer (SP2), nephelometer, LiCor CO<sub>2</sub> analyzer, a chemiluminescence ozone instrument, and a wing-mounted meteorological probe. Our measurements included: CO<sub>2</sub>; CO; NO<sub>x</sub>; NH<sub>3</sub>; non-methane organic compounds; organic aerosol (OA); inorganic aerosol (nitrate, ammonium, sulfate, and chloride); aerosol light scattering; refractory black carbon (rBC); and ambient temperature, relative humidity, barometric pressure, and three-dimensional wind velocity. The molar ratio of excess O<sub>3</sub> to excess CO in the plume (ΔO<sub>3</sub>/ΔCO) increased from −5.13 (±1.13) × 10<sup>−3</sup> to 10.2 (±2.16) × 10<sup>−2</sup> in ~4.5 h following smoke emission. Excess acetic and formic acid (normalized to excess CO) increased by factors of 1.73 ± 0.43 and 7.34 ± 3.03 (respectively) over the same time since emission. Based on the rapid decay of C<sub>2</sub>H<sub>4</sub> we infer an in-plume average OH concentration of 5.27 (±0.97) × 10<sup>6</sup> molec cm<sup>−3</sup>, consistent with previous studies showing elevated OH concentrations in biomass burning plumes. Ammonium, nitrate, and sulfate all increased over the course of 4 h. The observed ammonium increase was a factor of 3.90 ± 2.93 in about 4 h, but accounted for just ~36% of the gaseous ammonia lost on a molar basis. Some of the gas phase NH<sub>3</sub> loss may have been due to condensation on, or formation of, particles below the AMS detection range. NO<sub>x</sub> was converted to PAN and particle nitrate with PAN production being about two times greater than production of observable nitrate in the first ~4 h following emission. The excess aerosol light scattering in the plume (normalized to excess CO<sub>2</sub>) increased by a factor of 2.50 ± 0.74 over 4 h. The increase in light scattering was similar to that observed in an earlier study of a biomass burning plume in Mexico where significant secondary formation of OA closely tracked the increase in scattering. In the California plume, however, ΔOA/ΔCO<sub>2</sub> decreased sharply for the first hour and then increased slowly with a net decrease of ~20% over 4 h. The fraction of thickly coated rBC par...
Atmospheric black carbon makes an important but poorly quantified contribution to the warming of the global atmosphere. Laboratory and modelling studies have shown that the addition of non-black carbon materials to black carbon particles may enhance the particles' light absorption by 50 to 60% by refracting and reflecting light. Real world experimental evidence for this 'lensing' effect is scant and conflicting, showing that absorption enhancements can be less than 5% or as large as 140%. Here we present simultaneous quantifications of the composition and optical properties of individual atmospheric black carbon particles. We show that particles with a mass ratio of non-black carbon to black carbon of less than 1.5, which is typical of fresh traffic sources, are best represented as having no absorption enhancement. In contrast, black carbon particles with a ratio greater than 3, which is typical of biomass burning emissions, are best described assuming optical lensing leading to an absorption enhancement. We introduce a generalised hybrid model approach for estimating scattering and absorption enhancements based on laboratory and atmospheric observations. We conclude that the occurrence of the absorption enhancement of black carbon particles is determined by the particles' mass ratio of non-black carbon to black carbon.Atmospheric black carbon (BC) makes the second largest single contribution after CO 2 to climate forcing in the present-day atmosphere 1 . Previous detailed modelling and laboratory studies have shown that weakly absorbing non-BC materials contained within the same particles as BC can significantly enhance the absorption per unit mass of the latter through refraction and internal reflections, sometimes referred to as the 'lensing effect' 2,3 . A "coreshell" description 4 has often been applied to describe this effect when coatings envelop the central BC core, but this oversimplifies the complex particle morphologies 5 . The non-BC components may not be evenly distributed and the BC core is not necessarily completely enclosed, and as such the absorption enhancement predicted using the core-shell approach could greatly overestimate the real value 3 . Microscopy 5,6 can examine BC microphysical properties but has limited quantitative capability and may evaporate semi-volatile materials.By detecting the remaining non-BC fragment after laser induced incandescence with a single particle soot photometer (SP2 7 , DMT inc.), Sedlacek et al. 8 and Moteki et al. 9 reported the non-core-shell structure of some BC particles, however they did not provide an appropriate model approach to estimate optical properties. Measurement of single BC particle mass ratioIn this study, for the first time we quantify the mixing state of individual BC particles using morphology-independent measurements of the total particle mass (M p ) and the mass of the refractory black carbon, rBC (M rBC ) from a variety of laboratory and field experiments. We determined the mass ratio, M R (= M non-BC /M rBC ), where M non-BC is the mas...
Aerosol emissions from prescribed fires can affect air quality on regional scales. Accurate representation of these emissions in models requires information regarding the amount and composition of the emitted species. We measured a suite of submicron particulate matter species in young plumes emitted from prescribed fires (chaparral and montane ecosystems in California; coastal plain ecosystem in South Carolina) and from open burning of over 15 individual plant species in the laboratory. We report emission ratios and emission factors for refractory black carbon (rBC) and submicron nonrefractory aerosol and compare field and laboratory measurements to assess the representativeness of our laboratory-measured emissions. Laboratory measurements of organic aerosol (OA) emission factors for some fires were an order of magnitude higher than those derived from any of our aircraft observations; these are likely due to higher-fuel moisture contents, lower modified combustion efficiencies, and less dilution compared to field studies. Nonrefractory inorganic aerosol emissions depended more strongly on fuel type and fuel composition than on combustion conditions. Laboratory and field measurements for rBC were in good agreement when differences in modified combustion efficiency were considered; however, rBC emission factors measured both from aircraft and in the laboratory during the present study using the Single Particle Soot Photometer were generally higher than values previously reported in the literature, which have been based largely on filter measurements. Although natural variability may account for some of these differences, an increase in the BC emission factors incorporated within emission inventories may be required, pending additional field measurements for a wider variety of fires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.