Atmospheric black carbon makes an important but poorly quantified contribution to the warming of the global atmosphere. Laboratory and modelling studies have shown that the addition of non-black carbon materials to black carbon particles may enhance the particles' light absorption by 50 to 60% by refracting and reflecting light. Real world experimental evidence for this 'lensing' effect is scant and conflicting, showing that absorption enhancements can be less than 5% or as large as 140%. Here we present simultaneous quantifications of the composition and optical properties of individual atmospheric black carbon particles. We show that particles with a mass ratio of non-black carbon to black carbon of less than 1.5, which is typical of fresh traffic sources, are best represented as having no absorption enhancement. In contrast, black carbon particles with a ratio greater than 3, which is typical of biomass burning emissions, are best described assuming optical lensing leading to an absorption enhancement. We introduce a generalised hybrid model approach for estimating scattering and absorption enhancements based on laboratory and atmospheric observations. We conclude that the occurrence of the absorption enhancement of black carbon particles is determined by the particles' mass ratio of non-black carbon to black carbon.Atmospheric black carbon (BC) makes the second largest single contribution after CO 2 to climate forcing in the present-day atmosphere 1 . Previous detailed modelling and laboratory studies have shown that weakly absorbing non-BC materials contained within the same particles as BC can significantly enhance the absorption per unit mass of the latter through refraction and internal reflections, sometimes referred to as the 'lensing effect' 2,3 . A "coreshell" description 4 has often been applied to describe this effect when coatings envelop the central BC core, but this oversimplifies the complex particle morphologies 5 . The non-BC components may not be evenly distributed and the BC core is not necessarily completely enclosed, and as such the absorption enhancement predicted using the core-shell approach could greatly overestimate the real value 3 . Microscopy 5,6 can examine BC microphysical properties but has limited quantitative capability and may evaporate semi-volatile materials.By detecting the remaining non-BC fragment after laser induced incandescence with a single particle soot photometer (SP2 7 , DMT inc.), Sedlacek et al. 8 and Moteki et al. 9 reported the non-core-shell structure of some BC particles, however they did not provide an appropriate model approach to estimate optical properties. Measurement of single BC particle mass ratioIn this study, for the first time we quantify the mixing state of individual BC particles using morphology-independent measurements of the total particle mass (M p ) and the mass of the refractory black carbon, rBC (M rBC ) from a variety of laboratory and field experiments. We determined the mass ratio, M R (= M non-BC /M rBC ), where M non-BC is the mas...
Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.
Abstract. Atmospheric black carbon (BC) is a leading climate warming agent, yet uncertainties on the global direct radiative forcing (DRF) remain large. Here we expand a global model simulation (GEOS-Chem) of BC to include the absorption enhancement associated with BC coating and separately treat both the aging and physical properties of fossil-fuel and biomass-burning BC. In addition we develop a global simulation of brown carbon (BrC) from both secondary (aromatic) and primary (biomass burning and biofuel) sources. The global mean lifetime of BC in this simulation (4.4 days) is substantially lower compared to the AeroCom I model means (7.3 days), and as a result, this model captures both the mass concentrations measured in nearsource airborne field campaigns (ARCTAS, EUCAARI) and surface sites within 30 %, and in remote regions (HIPPO) within a factor of 2. We show that the new BC optical properties together with the inclusion of BrC reduces the model bias in absorption aerosol optical depth (AAOD) at multiple wavelengths by more than 50 % at AERONET sites worldwide. However our improved model still underestimates AAOD by a factor of 1.4 to 2.8 regionally, with the largest underestimates in regions influenced by fire. Using the RRTMG model integrated with GEOS-Chem we estimate that the all-sky top-of-atmosphere DRF of BC is +0.13 Wm −2 (0.08 Wm −2 from anthropogenic sources and 0.05 Wm −2 from biomass burning). If we scale our model to match AERONET AAOD observations we estimate the DRF of BC is +0.21 Wm −2 , with an additional +0.11 Wm −2 of warming from BrC. Uncertainties in size, optical properties, observations, and emissions suggest an overall uncertainty in BC DRF of −80 %/+140 %. Our estimates are at the lower end of the 0.2-1.0 Wm −2 range from previous studies, and substantially less than the +0.6 Wm −2 DRF estimated in the IPCC 5th Assessment Report. We suggest that the DRF of BC has previously been overestimated due to the overestimation of the BC lifetime (including the effect on the vertical profile) and the incorrect attribution of BrC absorption to BC.
Abstract. Black carbon aerosols (BC) at a London urban site were characterised in both winter-and summertime 2012 during the Clean Air for London (ClearfLo) project. Positive matrix factorisation (PMF) factors of organic aerosol mass spectra measured by a high-resolution aerosol mass spectrometer (HR-AMS) showed traffic-dominant sources in summer but in winter the influence of additional non-traffic sources became more important, mainly from solid fuel sources (SF). Measurements using a single particle soot photometer (SP2, DMT), showed the traffic-dominant BC exhibited an almost uniform BC core size (D c ) distribution with very thin coating thickness throughout the detectable range of D c . However, the size distribution of D c (project average mass median D c = 149 ± 22 nm in winter, and 120 ± 6 nm in summer) and BC coating thickness varied significantly in winter. A novel methodology was developed to attribute the BC number concentrations and mass abundances from traffic (BC tr ) and from SF (BC sf ), by using a 2-D histogram of the particle optical properties as a function of BC core size, as measured by the SP2. The BC tr and BC sf showed distinctly different D c distributions and coating thicknesses, with BC sf displaying larger D c and larger coating thickness compared to BC tr . BC particles from different sources were also apportioned by applying a multiple linear regression between the total BC mass and each AMS-PMF factor (BC-AMS-PMF method), and also attributed by applying the absorption spectral dependence of carbonaceous aerosols to 7-wavelength Aethalometer measurements (Aethalometer method).Air masses that originated from westerly (W), southeasterly (SE), and easterly (E) sectors showed BC sf fractions that ranged from low to high, and whose mass median D c values were 137 ± 10 nm, 143 ± 11 nm and 169 ± 29 nm, respectively. The corresponding bulk relative coating thickness of BC (coated particle size/BC core -D p /D c ) for these same sectors was 1.28 ± 0.07, 1.45 ± 0.16 and 1.65 ± 0.19. For W, SE and E air masses, the number fraction of BC sf ranged from 6 ± 2 % to 11 ± 5 % to 18 ± 10 %, respectively, but importantly the larger BC core sizes lead to an increased fraction of BC sf in terms of mass than number (for W, SE and E air masses, the BC sf mass fractions ranged from 16 ± 6 %, 24 ± 10 % and 39 ± 14 %, respectively). An increased fraction of non-BC particles (particles that did not contain a BC core) was also observed when SF sources were more significant. The BC mass attribution by the SP2 method agreed well with the BC-AMS-PMF multiple linear regression method (BC-AMS-PMF : SP2 ratio = 1.05, r 2 = 0.80) over the entire experimental period. Good agreement was found between BC sf attributed with the Aethalometer model and the Published by Copernicus Publications on behalf of the European Geosciences Union. D. Liu et al.: Size distribution, mixing state and source apportionment of BC in LondonSP2. However, the assumed absorption Ångström exponent (α wb ) had to be changed according to the d...
The wet removal of black carbon aerosol (BC) in the atmosphere is a crucial factor in determining its atmospheric lifetime and thereby the vertical and horizontal distributions, dispersion on local and regional scales, and the direct, semi-direct and indirect radiative forcing effects. The in-cloud scavenging and wet deposition rate of freshly emitted hydrophobic BC will be increased on acquisition of more-hydrophilic components by coagulation or coating processes. The lifetime of BC is still subject to considerable uncertainty for most of the model inputs, which is largely due to the insufficient constraints on the BC hydrophobic-to-hydrophilic conversion process from observational field data. This study was conducted at a site along UK North Norfolk coastline, where the BC particles were transported from different regions within Western Europe. A hygroscopicity tandem differential mobility analyser (HTDMA) was coupled with a single particle soot photometer (SP2) to measure the hygroscopic properties of BC particles and associated mixing state in real time. In addition, a Soot Particle AMS (SP-AMS) measured the chemical compositions of additional material associated with BC particles. The ensemble of BC particles persistently contained a less-hygroscopic mode at a growth factor (gf) of around 1.05 at 90% RH (dry diameter 163 nm). Importantly, a more-hygroscopic mode of BC particles was observed throughout the experiment, the gf of these BC particles extended up to ~1.4–1.6 with the minimum between this and the less hygroscopic mode at a gf ~1.25, or equivalent effective hygroscopicity parameter <i>κ</i> ~0.1. The gf of BC particles (gf<sub>BC</sub>) was highly influenced by the composition of associated soluble material: increases of gf<sub>BC</sub> were associated with secondary inorganic components, and these increases were more pronounced when ammonium nitrate was in the BC particles; however the presence of secondary organic matter suppressed the gf<sub>BC</sub> below that of pure inorganics. The Zdanovskii-Stokes-Robinson (ZSR) mixing rule captures the hygroscopicity contributions from different compositions within ±30% compared to the measured results, however is subject to uncertainty due to the complex morphology of BC component and potential artefacts associated with semivolatile particles measured with the HTDMA. This study provides detailed insights on BC hygroscopicity associated with its mixing state, and the results will importantly constrain the microphysical mixing schemes of BC as used by a variety of high level models. In particular, this provides direct evidence to highlight the need to consider ammonium nitrate ageing of BC particles because this will result in particles becoming hydrophilic on much shorter timescales than for sulphate formation, which is often the only mechanism considered
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.