We develop a theory of point defects in cholesterics and textures in spherical droplets with normal anchoring. The local structure of chiral defects is described by singularity theory and a smecticlike gradient field establishing a nexus between cholesterics and smectics mediated by their defects. We identify the defects of degree −2 and −3 observed experimentally with the singularities D − 4 and T4,4,4, respectively. Radial point defects typical of nematics cannot be perturbed into chiral structures with a single handedness by general topological considerations. For the same reasons, the spherical surface frustrates the chirality in a surface boundary layer containing regions of both handedness.arXiv:1808.03492v1 [cond-mat.soft]
We give a description of the intrinsic geometry of elastic distortions in three-dimensional nematic liquid crystals and establish necessary and sufficient conditions for a set of functions to represent these distortions by describing how they couple to the curvature tensor. We demonstrate that, in contrast to the situation in two dimensions, the first-order gradients of the director alone are not sufficient for full reconstruction of the director field from its intrinsic geometry: it is necessary to provide additional information about the second-order director gradients. We describe several different methods by which the director field may be reconstructed from its intrinsic geometry. Finally, we discuss the coupling between individual distortions and curvature from the perspective of Lie algebras and groups and describe homogeneous spaces on which pure modes of distortion can be realised.
We describe the geometry of bend distortions in liquid crystals and their fundamental degeneracies, which we call β lines; these represent a new class of linelike topological defect in twist-bend nematics. We present constructions for smecticlike textures containing screw and edge dislocations and also for vortexlike structures of double twist and Skyrmions. We analyze their local geometry and global structure, showing that their intersection with any surface is twice the Skyrmion number. Finally, we demonstrate how arbitrary knots and links can be created and describe them in terms of merons, giving a geometric perspective on the fractionalization of Skyrmions.
Our study of cholesteric lyotropic chromonic liquid crystals in cylindrical confinement reveals the topological aspects of cholesteric liquid crystals. The double-twist configurations we observe exhibit discontinuous layering transitions, domain formation, metastability, and chiral point defects as the concentration of chiral dopant is varied. We demonstrate that these distinct layer states can be distinguished by chiral topological invariants. We show that changes in the layer structure give rise to a chiral soliton similar to a toron, comprising a metastable pair of chiral point defects. Through the applicability of the invariants we describe to general systems, our work has broad relevance to the study of chiral materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.