Shape transformation upon annealing of fused filament fabrication additively manufacturing structures is investigated as a oneway shape memory strategy using commodity thermoplastics. Irreversible thermal strain, which is a measurement of shape transformation upon annealing, is shown to depend on both raster angle and layer thickness, both of which are parameters than can be easily adjusted on most FFF printers. We present an algorithm based on our understanding of the underlying micromechanics of the system that allows for input of desired final dimensions and output the necessary print parameters. We also demonstrate that this approach is extensible to other materials and report more complex shape memory geometries.In this study, we demonstrate that ITε is not only dependent on both raster angle and layer thickness, but its magnitude and direction may be predicted based on those parameters. An algorithm is developed Additional Supporting Information may be found in the online version of this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.