The magnesium oxide nanoparticles (MgO NPs) were prepared from Moringa oleifera leaf extract. Phytochemicals are derived from plant extract which are served as stabilizing and capping agents. This green route has been attracted owing to speed, reliable, and eco-friendly and cost-effective one. The synthesized magnesium oxide nanoparticles were taken into three different calcination temperatures (500, 600, and 700°C). The powder X-ray diffraction (PXRD) study shows a pure phase of face-centered cubic structure. Periclase MgO nanoparticles were prepared. The optical band gap of MgO nanoparticles is 4.5 eV, and its absorption in the UV region was observed by UV-visible spectroscopy (UV-Vis). Photoluminescence spectra have exhibited multicolor emissions were being at UV and visible region due to defect centers (F centers) of MgO nanoparticles. EDX (energy dispersive X-ray spectrum) has given the stoichiometric ratio of Mg and O. The functional groups have been studied by Fourier transformed infrared spectroscopy (FTIR), surface morphology transformation has been identified by scanning electron microscopy (SEM) studies, and VSM measurements have given the information of diamagnetic nature of MgO nanoparticles. H-R TEM micrographs have confirmed that particles were in nanorange matched with XRD report. Polycrystalline nature has been observed pattern information. TG-DSC characterization revealed phase transition and weight loss information. D-band and G-band of MgO nanoparticles are studied by micro-Raman analysis. Dielectric analysis has proven that MgO nanoparticles will be a promising candidate for linear dielectric ceramics, thermistor. The present resent studies have revealed that MgO powder will be an economical and promising candidate in superconductor, optoelectronic device, and energy storage applications.
The present investigation reported the controlled synthesis of Cd
0.9
Zn
0.1
S and Cd
0.89
Zn
0.1
Ni
0.01
S nanostructures by simple chemical co-precipitation route. The XRD analysis confirmed the cubic structure of CdS on Zn doped CdS and Zn, Ni dual doped CdS without any secondary/impurity phases and no alteration in CdS cubic phase was noticed by Zn/Ni addition. The shrinkage of crystallite size from 69 to 43 Å and the variation in lattice constants and micro-strain were described by the addition of Ni and the defects associated with Ni
2+
ions. Microstructural and optical studies of the prepared films were carried out using scanning electron microscope (SEM), UV-visible spectrometer and photoluminescence (PL) spectra. The enhanced optical absorbance in the visible wavelength and the reduced energy gap by Ni substitution showed that Cd
0.89
Zn
0.1
Ni
0.01
S nanostructures are useful to improve the efficiency of opto-electronic devices. The functional groups of Cd-S/Zn-Cd-S/Zn/Ni-Cd-S and their chemical bonding were verified by Fourier transform infrared (FTIR) studies. The elevated visible PL emissions such as blue and green emissions by Ni addition was explained by decreasing of crystallite size and generation of more defects. Zn, Ni dual doped CdS nanostructures are identified as the probable an efficient photo-catalyst for the degradation of methylene blue dye. The liberation of more charge carriers, better visible absorbance, improved surface to volume ratio and the creation of more defects are accountable for the current photo-catalytic activity in Zn/Ni doped CdS which exhibited better photo-catalytic stability after sex cycling process. The better bacterial killing ability is noticed in Ni doped Cd
0.9
Zn
0.1
S nanostructure which is due to the collective effect of lower particle/grain size and also higher ROS producing capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.