Oleogels and emulgels were developed with winterized algal oil from Schizochytrium spp. rich in ω‐3 fatty acids (FAs) to overcome physical limitations of using a highly unsaturated lipid source in food applications. Both gel types were developed using monolaurin or a combination of mono‐ and diacylglycerols (MAG/DAG) as the gelator at concentrations of 8%, 10%, or 12% (w/w) in oil or emulsion. A 30‐day oxidation study was conducted using peroxide value, p‐Anisidine value, and change in FA composition to measure the level of oxidation. Oleogel and emulgel samples exhibited a higher oxidative stability than bulk algal oil and oil‐in‐water emulsion as control groups, respectively. The 12% monolaurin oleogel outperformed others in oxidative stability, preventing oxidation of approximately 11.66% and 7.86% of EPA and DHA, respectively, compared to algal oil. Physical characteristics including thermal behavior, solid fat content (SFC), rheology, morphology, and polymorphism were studied. Results indicated that MAG/DAG oleogels and monolaurin emulgels were the most physically stable. The SFC of 12% MAG/DAG oleogel at 30°C was 10.27% whereas 12% monolaurin oleogel was only 4.51%. Both gel types developed with monolaurin and MAG/DAG could be used for different applications as they exhibited desirable qualities such as oxidative stability and improved physical characteristics.
Oleogels and emulgels were developed with winterized algal oil from Schizochytrium spp. rich in ω-3 fatty acids (FAs) to overcome physical limitations of using a highly unsaturated lipid source in food applications. Both gel types were developed using monolaurin or a combination of mono- and diacylglycerols (MAG/DAG) as the gelator at concentrations of 8, 10, or 12%, w/w, in oil or emulsion. A 14-day accelerated oxidation study was conducted using peroxide value, p-Anisidine value, and change in FA composition to measure the level of oxidation. Oleogel and emulgel samples exhibited a higher oxidative stability than bulk algal oil and oil-in-water emulsion as control groups, respectively. The 12% monolaurin oleogel outperformed others in oxidative stability, preventing oxidation of approximately 17.96% and 20.43% of EPA and DHA, respectively, compared to algal oil. Physical characteristics including thermal behavior, solid fat content (SFC), rheology, morphology, and polymorphism were studied. Results indicated that MAG/DAG oleogels and monolaurin emulgels were the most physically stable. The SFC of 12% MAG/DAG oleogel at 30 °C was 10.27% whereas 12% monolaurin oleogel was only 4.51%. Both gel types developed with monolaurin and MAG/DAG could be used for different applications as they exhibited desirable qualities such as oxidative stability and improved physical characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.