Combinatorial methods and informatics are applied to the study of complex property‐structure‐processing relationships during interpenetrating polymer network formation in an epoxy/acrylate system. Principal component analysis of a dataset that covers different compositions and process sequences successfully identifies the most unique samples as well as relationships between material properties. The relationships between material properties can be exploited in future investigations by allowing high throughput screening and as a guide for engineering materials. The use of combinatorial methods, high throughput screening, and informatics will lead to accelerated material design.magnified image
Interpenetrating polymer networks (IPNs) of poly(ethylene glycol) 200 diacrylate and diglycidyl ether of bisphenol A were formed over a range of compositions and with different reaction sequences. We controlled the reaction sequence by thermally initiating the cationic epoxy polymerization, photoinitiating the free-radical acrylate polymerization, and changing the processing order. The reaction was monitored by attenuated total reflectance Fourier transform infrared spectroscopy, photo differential scanning calorimetry. and modulated differential scanning calorimetry (mDSC). The glass-transition temperature was estimated from mDSC. Mechanical and rheological tests provided the strength and hardness of the materials. Morphology and phase separation were explored with optical and scanning electron microscopy. All of the physical properties were dependent on IPN composition. Some properties and the morphology were dependent on the reaction sequence. Significant differences in glass-transition temperature were observed at the same composition but with different reaction sequences. Even with minimal structure, correlations existed between the morphology and material properties with partially phase-separated samples exhibiting maximum damping. The rapid reaction allowed minimal phase separation, yet different reaction sequences resulted in significantly different properties. This systematic study indicated that the relationships between phase morphology, processing, and the physical properties of IPNs are complex and not predictable a priori.
Changes in the molecular structure and composition of interpenetrating polymer networks (IPNs) can be used to tailor their properties. While the properties of IPNs are typically different than polymer blends, a clear understanding of the impact of changing polymerization sequence on the physical properties and the corresponding molecular bonding is needed. To address this issue, a data mining approach is used to identify the change with polymerization sequence of tensile and rheological properties of acrylate-epoxy IPNs. The experimental approach used to study the molecular structure is high throughput Fourier transform infrared (FTIR) spectroscopy. Analysis of the FTIR spectra of IPNs synthesized with different polymerization sequences leads to an understanding of the molecular bonding responsible for the tensile and rheological properties. From the interpretation of the wavenumber bands and associated molecular bonds, we find that the polymerization sequence most affects hydrogen bonding and aromatic ring bond energies. This work defines the relationships between chemistry, structure, processing, and properties of the IPN samples. Changes in the molecular structure and composition of interpenetrating polymer networks (IPNs) can be used to tailor their properties. While the properties of IPNs are typically different than polymer blends, a clear understanding of the impact of changing polymerization sequence on the physical properties and the corresponding molecular bonding is needed. To address this issue, a data mining approach is used to identify the change with polymerization sequence of tensile and rheological properties of acrylate-epoxy IPNs. The experimental approach used to study the molecular structure is high throughput Fourier transform infrared (FTIR) spectroscopy. Analysis of the FTIR spectra of IPNs synthesized with different polymerization sequences leads to an understanding of the molecular bonding responsible for the tensile and rheological properties. From the interpretation of the wavenumber bands and associated molecular bonds, we find that the polymerization sequence most affects hydrogen bonding and aromatic ring bond energies. This work defines the relationships between chemistry, structure, processing, and properties of the IPN samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.