Herein we cover the key concepts in the field of thermoelectric materials research, present the current understanding, and show the latest developments. Current research is aimed at increasing the thermoelectric figure of merit (ZT) by maximizing the power factor and/or minimizing the thermal conductivity. Attempts at maximizing the power factor include the development of new materials, optimization of existing materials by doping, and the exploration of nanoscale materials. The minimization of the thermal conductivity can come through solid-solution alloying, use of materials with intrinsically low thermal conductivity, and nanostructuring. Herein we describe the most promising bulk materials with emphasis on results from the last decade. Single-phase bulk materials are discussed in terms of chemistry, crystal structure, physical properties, and optimization of thermoelectric performance. The new opportunities for enhanced performance bulk nanostructured composite materials are examined and a look into the not so distant future is attempted.
We have investigated the possible mechanisms of phonon scattering by nanostructures and defects in PbTe-X (X = 2% Sb, Bi, or Pb) thermoelectric materials systems. We find that among these three compositions, PbTe-2% Sb has the lowest lattice thermal conductivity and exhibits a larger strain and notably more misfit dislocations at the precipitate/PbTe interfaces than the other two compositions. In the PbTe-Bi 2% sample, we infer some weaker phonon scattering BiTe precipitates, in addition to the abundant Bi nanostructures. In the PbTe-Pb 2% sample, we also find that pure Pb nanoparticles exhibit stronger phonon scattering than nanostructures with Te vacancies. Within the accepted error range, the theoretical calculations of the lattice thermal conductivity in the three systems are in close agreement with the experimental measurements, highlighting the important role of misfit dislocations, nanoscale particles, and associated interfacial elastic strain play in phonon scattering. We further propose that such particle-induced local elastic perturbations interfere with the phonon propagation pathway, thereby contributing to further reduction in lattice thermal conductivity, and consequently can enhance the overall thermoelectric figure of merit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.