A fundamental goal in biotechnology and biology is the development of approaches to better understand the genetic basis of traits. Here we report a versatile method, trackable multiplex recombineering (TRMR), whereby thousands of specific genetic modifications are created and evaluated simultaneously. To demonstrate TRMR, in a single day we modified the expression of >95% of the genes in Escherichia coli by inserting synthetic DNA cassettes and molecular barcodes upstream of each gene. Barcode sequences and microarrays were then used to quantify population dynamics. Within a week we mapped thousands of genes that affect E. coli growth in various media (rich, minimal and cellulosic hydrolysate) and in the presence of several growth inhibitors (beta-glucoside, D-fucose, valine and methylglyoxal). This approach can be applied to a broad range of traits to identify targets for future genome-engineering endeavors.
The first step in the pentachlorophenol (PCP) degradation pathway in Sphingobium chlorophenolicum has been believed for more than a decade to be conversion of PCP to tetrachlorohydroquinone. We show here that PCP is actually converted to tetrachlorobenzoquinone, which is subsequently reduced to tetrachlorohydroquinone by PcpD, a protein that had previously been suggested to be a PCP hydroxylase reductase. pcpD is immediately downstream of pcpB, the gene encoding PCP hydroxylase (PCP monooxygenase). Expression of PcpD is induced in the presence of PCP. A mutant strain lacking functional PcpD has an impaired ability to remove PCP from the medium. In contrast, the mutant strain removes tetrachlorophenol from the medium at the same rate as does the wild-type strain. These data suggest that PcpD catalyzes a step necessary for degradation of PCP, but not for degradation of tetrachlorophenol. Based upon the known mechanisms of flavin monooxygenases such as PCP hydroxylase, hydroxylation of PCP should produce tetrachlorobenzoquinone, while hydroxylation of tetrachlorophenol should produce tetrachlorohydroquinone. Thus, we proposed and verified experimentally that PcpD is a tetrachlorobenzoquinone reductase that catalyzes the NADPH-dependent reduction of tetrachlorobenzoquinone to tetrachlorohydroquinone.
We describe a directed genome-engineering approach that combines genome-wide methods for mapping genes to traits [Warner JR, Reeder PJ, Karimpour-Fard A, Woodruff LBA, Gill RT (2010) Nat Biotechnol 28:856–862] with strategies for rapidly creating combinatorial ribosomal binding site (RBS) mutation libraries containing billions of targeted modifications [Wang HH, et al. (2009) Nature 460:894–898]. This approach should prove broadly applicable to various efforts focused on improving production of fuels, chemicals, and pharmaceuticals, among other products. We used barcoded promoter mutation libraries to map the effect of increased or decreased expression of nearly every gene in Escherichia coli onto growth in several model environments (cellulosic hydrolysate, low pH, and high acetate). Based on these data, we created and evaluated RBS mutant libraries (containing greater than 100,000,000 targeted mutations), targeting the genes identified to most affect growth. On laboratory timescales, we successfully identified a broad range of mutations (>25 growth-enhancing mutations confirmed), which improved growth rate 10–200% for several different conditions. Although successful, our efforts to identify superior combinations of growth-enhancing genes emphasized the importance of epistatic interactions among the targeted genes (synergistic, antagonistic) for taking full advantage of this approach to directed genome engineering.
Tetrachlorohydroquinone dehalogenase catalyzes two successive reductive dehalogenation reactions in the pathway for degradation of pentachlorophenol in the soil bacterium Sphingobium chlorophenolicum. We have used pre-steady-state kinetic methods to probe both the mechanism and the rates of elementary steps in the initial stages of the reductive dehalogenation reaction. Binding of trichlorohydroquinone (TriCHQ) to the active site is followed by rapid deprotonation to form TriCHQ-2 and subsequent formation of 3,5,6-trichloro-4-hydroxycyclohexa-2,4-dienone (TriCHQ*). Further conversion of TriCHQ* to 2,6-dichlorohydroquinone (DCHQ) proceeds only in the presence of glutathione. Conversion of TriCHQ to DCHQ during the first turnover is quite rapid, occurring at about 25 s-1 when the enzyme is saturated with TriCHQ and glutathione. The rate of subsequent turnovers is limited by the rate of the thiol-disulfide exchange reaction required to regenerate the free enzyme after turnover, a reaction that is intrinsically less difficult, but is hampered by premature binding of the aromatic substrate to the active site before the catalytic cycle is completed.
Tetrachlorohydroquinone dehalogenase catalyzes the reductive dehalogenation of tetrachloro- and trichlorohydroquinone to give 2,6-dichlorohydroquinone in the pathway for degradation of pentachlorophenol by Sphingobium chlorophenolicum. Previous work has suggested that this enzyme may have originated from a glutathione-dependent double bond isomerase such as maleylacetoacetate isomerase or maleylpyruvate isomerase. While some of the elementary steps in these two reactions may be similar, the final step in the dehalogenation reaction, a thiol-disulfide exchange reaction that removes glutathione covalently bound to Cys13, certainly has no counterpart in the isomerization reaction. The thiol-disulfide exchange reaction does not appear to have been evolutionarily optimized. There is little specificity for the thiol; many thiols react at high rates. TCHQ dehalogenase binds the glutathione involved in the thiol-disulfide exchange reaction very poorly and does not alter its pK(a) in order to improve its nucleophilicity. Remarkably, single-turnover kinetic studies show that the enzyme catalyzes this step by approximately 10000-fold. This high reactivity requires an as yet unidentified protonated group in the active site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.