Studies performed in our laboratory demonstrated the formation of two thermodynamically distinct complexes on binding of netropsin to a number of hairpin-forming DNA sequences containing AATT-binding regions. These two complexes were proposed to differ only by a bridging water molecule between the drug and the DNA in the lower affinity complex. A temperature-dependent isothermal titration calorimetry (ITC)-binding study was performed using one of these constructs (a 20-mer hairpin of sequence 5'-CGAATTCGTCTCCGAATTCG) and netropsin. This study demonstrated a break in the heat capacity change for the formation of the complex containing the bridging water molecule at approximately 303 K. In the plot of the binding enthalpy change versus temperature, the slope (DeltaCp) was -0.67 kcal mol-1 K-1 steeper after the break at 303 K. Because of the relatively low melting temperature of the 20-mer hairpin (341 K (68 degrees C)), the enthalpy change for complex formation might have included some energy of refolding of the partially denatured hairpin, giving the suggestion of a larger DeltaCp. Studies done on the binding of netropsin to similar constructs, a 24-mer and a 28-mer, with added GC basepairs in the hairpin stem to increase thermal stability, exhibit the same nonlinearity in DeltaCp over the temperature range of from 275 to 333 K. The slopes (DeltaCp) were -0.69 and -0.64 kcal mol-1 K-1 steeper after 303 K for the 24-mer and 28-mer, respectively. This observation strengthens the argument regarding the presence of a bridging water molecule in the lower affinity netropsin/DNA complex. The DeltaCp data seem to infer that because the break in the heat capacity change function for the lower affinity binding occurs at the isoequilibrium temperature for water, water may be included or trapped in the complex. The fact that this break does not occur in the heat capacity change function for formation of the higher affinity complex can similarly be taken as evidence that water is not included in the higher affinity complex.
Rules for polyamide DNA recognition have proved invaluable for the design of sequence-selective DNA-binding agents in cell-free systems. However, these rules are not fully transferrable to predicting activity in cells, tissues or animals, and additional refinements to our understanding of DNA recognition would help biomedical studies. Similar complexities are encountered when using internal β-alanines as polyamide building blocks in place of N-methyl pyrrole; β-alanines were introduced in polyamide designs to maintain good hydrogen bonding registry with the target DNA, especially for long polyamides or those with several GC bp (P.B. Dervan, A.R. Urbach, Essays Contemp. Chem. (2001) 327–339). Thus, to clarify important subtleties of molecular recognition, we studied the effects of replacing a single pyrrole with β-alanine in 8-ring polyamides designed against the Ets-1 transcription factor. Replacement of a single internal N-methylpyrrole with β-alanine to generate a β/Im pairing in two 8-ring polyamides causes a decrease in DNA binding affinity by two orders of magnitude and decreases DNA binding selectivity, contrary to expectations based on the literature. Measurements were made by fluorescence spectroscopy, quantitative DNA footprinting and surface plasmon resonance, with these vastly different techniques showing excellent agreement. Furthermore, results were validated for a range of DNA substrates from small hairpins to long dsDNA sequences. Docking studies helped show that β-alanine does not make efficient hydrophobic contacts with the rest of the polyamide or nearby DNA, in contrast to pyrrole. These results help refine design principles and expectations for polyamide-DNA recognition.
The formation of two different minor groove complexes between netropsin and A2T2 DNA has been attributed to specific binding and hydration effects. In this study, we have examined the effect of added osmolyte (e.g., TEG or betaine) on the binding of netropsin to a hairpin DNA, d(CGCGAATTCGCGTC-TCCGCGAATTCGCG)-3, having a single A2T2 binding site. Netropsin binding to this DNA construct is described by a two fractional site model with a saturation stoichiometry of 1:1. Free energy changes, ΔGi, for formation of both complex I and complex II decrease continuously as osmolyte is added (e.g., ΔG1 decreases by 1.3 kcal/mol and ΔG2 decreases by 0.8 kcal/mol in 4 m osmolyte vs buffer). The negative ΔCp values for formation of both complexes, I and II, are largely unaffected by the addition of osmolyte. Formation of complex I is accompanied by the acquisition of 31 water molecules vs 19 waters for complex II. The most significant difference between the two osmolytes is that betaine diminishes the fractional formation of the complex II species, virtually eliminating complex II at 2 m. Addition of osmolyte or a decrease in the temperature have approximately the same effect on DNA hydration and on the thermodynamics of netropsin binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.