We report the first measurements and detailed analysis of extreme ultraviolet (EUV) spectra (4 nm to 20 nm) of highly-charged tungsten ions W 54+ to W 63+ obtained with an electron beam ion trap (EBIT). Collisional-radiative modelling is used to identify strong electric-dipole and magnetic-dipole transitions in all ionization stages. These lines can be used for impurity transport studies and temperature diagnostics in fusion reactors, such as ITER. Identifications of prominent lines from several W ions were confirmed by measurement of isoelectronic EUV spectra of Hf, Ta, and Au. We also discuss the importance of charge exchange recombination for correct description of ionization balance in the EBIT plasma.
An electron-beam ion trap (EBIT) is used to measure extreme ultraviolet spectra between 10 and 25 nm from highly charged ions of tungsten with an open 3d shell (W XLVIII through W LVI ). We found that almost all strong lines are due to the forbidden magnetic-dipole (M1) transitions within 3d n ground configurations. A total of 37 previously unknown spectral lines are identified using detailed collisional-radiative (CR) modeling of the EBIT spectra. A level-merging scheme for compactification of rate equations is described. The CR simulations for Maxwellian plasmas show that several line ratios involving these M1 lines can be used to reliably diagnose temperature and density in hot fusion devices.
The wavelengths of 19 spectral lines in the region 253-579 nm emitted by Hg pencil-type lamps were measured by Fourier-transform spectroscopy. Precise calibration of the spectra was obtained with wavelengths of (198)Hg as external standards. Our recommended values should be useful aswavelength-calibration standards for moderate-resolution spectrometers at an uncertainty level of 0.0001 nm.
This is a revision of the compilation of energy levels of iron for all ionization stages made in 1975 by Reader and Sugar. New material has since been provided for all but two of these ions. The present compilation includes electron configurations, energy levels, term designations, calculated leading percentages for most ions, experimental g.values, and ionization energies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.