The use of machine learning methods for the prediction of reaction yield is an emerging area. We demonstrate the applicability of support vector regression (SVR) for predicting reaction yields, using combinatorial data. Molecular descriptors used in regression tasks related to chemical reactivity have often been based on time-consuming, computationally demanding quantum chemical calculations, usually density functional theory. Structure-based descriptors (molecular fingerprints and molecular graphs) are quicker and easier to calculate and are applicable to any molecule. In this study, SVR models built on structurebased descriptors were compared to models built on quantum chemical descriptors. The models were evaluated along the dimension of each reaction component in a set of Buchwald-Hartwig amination reactions. The structure-based SVR models outperformed the quantum chemical SVR models, along the dimension of each reaction component. The applicability of the models was assessed with respect to similarity to training. Prospective predictions of unseen Buchwald-Hartwig reactions are presented for synthetic assessment, to validate the generalizability of the models, with particular interest along the aryl halide dimension.
The use of machine learning methods for the prediction of reaction yield is an emerging area. We demonstrate the applicability of support vector regression (SVR) for predicting reaction yields, using combinatorial data. Molecular descriptors used in regression tasks related to chemical reac?tivity have often been based on time-consuming, computationally demanding quantum chemical calculations, usually density functional theory. Structure-based descriptors (molecular fingerprints and molecular graphs) are quicker and easier to calculate, and are applicable to any molecule. In this study, SVR models built on structure-based descriptors were compared to models built on quantum chemical descriptors. The models were evaluated along the dimension of each reaction component in a set of Buchwald-Hartwig amination reactions. The structure-based SVR models out-performed the quantum chemical SVR models, along the dimension of each reaction compo?nent. The applicability of the models was assessed with respect to similarity to training. Prospec?tive predictions of unseen Buchwald-Hartwig reactions are presented for synthetic assessment, to validate the generalisability of the models, with particular interest along the aryl halide dimension.
The synthesis of new molecules is essential for progress in various sectors within the chemical industry and academia. Medicinal and materials chemistry are two examples. Searching through vast regions of chemical space for routes to new molecules is a time-consuming process carried out by expert synthetic chemists. The use of machine learning and artificial intelligence for synthetic chemistry is rapidly expanding, the aim being to reduce the timelines of chemical syntheses. Tools, which predict products of chemical reactions and design retrosynthetic routes, are attracting particular attention. Emerging computer-aided synthesis design (CASD) programs are not intended to replace synthetic chemists but to aid them in everyday decision making. The incorporation of condition optimisation and reaction performance is highly desirable. Combining such tools with an automated synthesis testing module holds much promise for the future of reaction condition optimisation. To achieve the desired progress in, and acceptance of CASD, there are a few challenges that need to be addressed.
Antimicrobial peptides (AMPs) represent a potential solution to the growing problem of antimicrobial resistance, yet their identification through wet-lab experiments is a costly and time-consuming process. Accurate computational predictions would...
Antimicrobial peptides (AMPs) represent a potential solution to the growing problem of antimicrobial resistance, yet their identification through wet-lab experiments is a costly and time-consuming process. Accurate computational predictions would allow rapid in silico screening of candidate AMPs, thereby accelerating the discovery process. Kernel methods are a class of machine learning algorithms that utilise a kernel function to transform input data into a new representation. When appropriately normalised, the kernel function can be regarded as a notion of similarity between instances. However, many expressive notions of similarity are not valid kernel functions, meaning they cannot be used with standard kernel methods such as the support-vector machine (SVM). The Kreın-SVM represents a generalisation of the standard SVM that admits a much larger class of similarity functions. In this study, we propose and develop Kreın-SVM models for AMP classification and prediction by employing the Levenshtein distance and local alignment score as sequence similarity functions. Utilising two datasets from the literature, each containing more than 3000 peptides, we train models to predict general antimicrobial activity. Our best models achieve an AUC of 0.967 and 0.863 on the test sets of each respective dataset, outperforming the in-house and literature baselines in both cases. We also curate a dataset of experimentally validated peptides, measured against Staphylococcus aureus and Pseudomonas aeruginosa, in order to evaluate the applicability of our methodology in predicting microbe-specific activity. In this case, our best models achieve an AUC of 0.933 and 0.917, respectively. Models to predict both general and microbe-specific activities are made available as web applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.