Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Background
With appropriate algorithms, computers can learn to detect patterns and associations in large data sets. The authors’ goal was to apply machine learning to arterial pressure waveforms and create an algorithm to predict hypotension. The algorithm detects early alteration in waveforms that can herald the weakening of cardiovascular compensatory mechanisms affecting preload, afterload, and contractility.
Methods
The algorithm was developed with two different data sources: (1) a retrospective cohort, used for training, consisting of 1,334 patients’ records with 545,959 min of arterial waveform recording and 25,461 episodes of hypotension; and (2) a prospective, local hospital cohort used for external validation, consisting of 204 patients’ records with 33,236 min of arterial waveform recording and 1,923 episodes of hypotension. The algorithm relates a large set of features calculated from the high-fidelity arterial pressure waveform to the prediction of an upcoming hypotensive event (mean arterial pressure < 65 mmHg). Receiver-operating characteristic curve analysis evaluated the algorithm’s success in predicting hypotension, defined as mean arterial pressure less than 65 mmHg.
Results
Using 3,022 individual features per cardiac cycle, the algorithm predicted arterial hypotension with a sensitivity and specificity of 88% (85 to 90%) and 87% (85 to 90%) 15 min before a hypotensive event (area under the curve, 0.95 [0.94 to 0.95]); 89% (87 to 91%) and 90% (87 to 92%) 10 min before (area under the curve, 0.95 [0.95 to 0.96]); 92% (90 to 94%) and 92% (90 to 94%) 5 min before (area under the curve, 0.97 [0.97 to 0.98]).
Conclusions
The results demonstrate that a machine-learning algorithm can be trained, with large data sets of high-fidelity arterial waveforms, to predict hypotension in surgical patients’ records.
Results suggest that a whole-body POC ultrasound curriculum can be effectively taught to anesthesiology residents and that this training may provide clinical benefit. These results should be evaluated within the context of the perioperative surgical home.
The results from this meta-analysis found that inaccuracy and imprecision of continuous noninvasive arterial pressure monitoring devices are larger than what was defined as acceptable. This may have implications for clinical situations where continuous noninvasive arterial pressure is being used for patient care decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.