Controlling oxygen content in perovskite oxides with ABO3 structure is one of most critical steps for tuning their functionality. Notably, there have been tremendous efforts to understand the effect of changes in oxygen content on the properties of perovskite thin films that are not composed of cations with multiple valance states. Here, we study the effect of oxygen vacancies on structural and electrical properties in epitaxial thin films of SrFeO3−δ (SFO), where SFO is a compound with multiple valance states at the B site. Various annealing treatments are used to produce different oxygen contents in the films, which has resulted in significant structural changes in the fully strained SFO films. The out-of-plane lattice parameter and tetragonality increase with decreasing oxygen concentration, indicating the crystal structure is closely related to the oxygen content. Importantly, variation of the oxygen content in the films significantly affects the dielectric properties, leakage conduction mechanisms, and the resistive hysteresis of the materials. These results establish the relationship between oxygen content and structural and functional properties for a range of multivalent transition metal oxides.
The efficacy, economics, and sustainability of a bio-based insecticide produced from the catalytic fast pyrolysis of biomass is reported. This synergistic approach to fuels and agrochemical production can improve both energy and food sectors.
Catalytic fast pyrolysis (CFP) of lignocellulosic biomass is under intense investigation to produce sustainable biofuels. CFP produces a heterogenous bio-oil fractions rich in oxygenated species, including cyclic ketones. While the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.