This paper presents a novel assembly sequence planning (ASP) procedure utilizing a subassembly based search algorithm (SABLS) for micro-assembly applications involving geometric and other assembly constraints. The breakout local search (BLS) algorithm is adapted to provide sequencing solutions in assemblies with no coherent solutions by converting the final assembly into subassemblies which can be assembled together. This is implemented using custom-made microparts which fit together only in a predefined fashion. Once the ASP is done, the parts are manipulated from a cluttered space to their final positions in the subassemblies using a path-planning algorithm based on rapidly exploring random tree (RRT*), a random-sampling based execution, and micromanipulation motion primitives. The entire system is demonstrated by assembling LEGO® inspired microparts into various configurations which involve subassemblies, showing the versatility of the system.
Assembly sequence planning is an engineering problem that has been of great interest in the manufacturing field at the macro-scale. As more complex assemblies are desired at the micro and nano scales it is no longer feasible for human beings to plan and execute the production of these systems. A promising algorithm that allows optimization of assembly sequence plans that has been developed is called the Breakout Local Search. One drawback of this algorithm is its inability to consider the need for intermediate sub-assemblies to generate feasible solutions. Here an expansion to the BLS algorithm, called the Sub Assembly Generating BLS (SABLS) algorithm, is proposed. The fitness function of this new algorithm is also tailored to the specific constraints and motion primitives for a micromanipulation test-bed allowing for its use in microassembly applications. It is shown that the proposed algorithm is capable of generating optimized solutions that can be assembled with this limited degree of freedom system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.