The intrinsic and extrinsic activation pathways of the hemostatic system converge when prothrombin is converted to thrombin. The ability to generate an adequate thrombin burst is the most central aspect of the coagulation cascade. The thrombin-generating potential in patients following cardiopulmonary bypass (CPB) may be indicative of their hemostatic status. In this report, thrombography, a unique technique for directly measuring the potential of patients’ blood samples to generate adequate thrombin bursts, is used to characterize the coagulopathic profile in post-CPB patients. Post-CPB hemostasis is typically achieved with protamine reversal of heparin anticoagulation and occasionally supplemented with blood product component transfusions. In this pilot study, platelet poor plasma samples were derived from 11 primary cardiac surgery patients at five time points: prior to CPB, immediately post-protamine, upon arrival to the intensive care unit (ICU), 3 hours post-ICU admission, and 24 hours after ICU arrival. Thrombography revealed that the Endogenous Thrombin Potential (ETP) was not different between [Baseline] and [PostProtamine] but proceeded to deteriorate in the immediate postoperative period. At the [3HourPostICU] time point, the ETP was significantly lower than the [Baseline] values, 1233 ± 591 versus 595 ± 379 nM.min (mean ± SD; n = 9, p < .005), despite continued adequacy of hemostasis. ETPs returned to baseline values the day after surgery. Transfusions received, conventional blood coagulation testing results, and blood loss volumes are also presented. Despite adequate hemostasis, thrombography reveals an underlying coagulopathic process that could put some cardiac surgical patients at risk for postoperative bleeding. Thrombography is a novel technique that could be developed into a useful tool for perfusionists and physicians to identify coagulopathies and optimize blood management following CPB.
Gaseous microemboli have been associated with post operative neurological deficits in patients undergoing cardiopulmonary bypass. Creating an optimal perfusion system that minimizes microemboli production and has enhanced abilities to sequester entrained air during the bypass procedure has been an important focus. This study examines the air-handling capabilities of a cardiopulmonary bypass circuit and correlates blood temperatures with microemboli loads proximal and distal to the arterial line filter within the circuit. Utilizing a Capiox RX25R oxygenator, Capiox 37 micron arterial filter, vacuum assisted venous return, and emboli detectors, 30 mL of air were injected into the venous line of a bypass circuit at eight different temperatures. Emboli were counted distal to the arterial line filter by the EDAQ® Quantifier (Emboli Detection and Classification). The average number of emboli detected distal to the arterial filter progressively increased as the perfusate temperature was dropped. At 37.0°C an average of 1.4 emboli was observed distal to the arterial filter within 90 seconds of the air injection. At 23.0°C an average of 49.8 emboli was detected. Air introduced into the venous side of the bypass circuit resulted in showers of microemboli being sent past the arterial line filter. In addition, as the bovine blood was cooled, the air handling capability of the circuit was diminished.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.