The Immersion Grating Infrared Spectrometer (IGRINS) is a compact high-resolution near-infrared cross-dispersed spectrograph whose primary disperser is a silicon immersion grating. IGRINS covers the entire portion of the wavelength range between 1.45 and 2.45μm that is accessible from the ground and does so in a single exposure with a resolving power of 40,000. Individual volume phase holographic (VPH) gratings serve as cross-dispersing elements for separate spectrograph arms covering the H and K bands. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is 1ʺ x 15ʺ and the plate scale is 0.27ʺ pixel -1 . The spectrograph employs two 2048 x 2048 pixel Teledyne Scientific & Imaging HAWAII-2RG detectors with SIDECAR ASIC cryogenic controllers. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be only 25mm, which permits a moderately sized (0.96m x 0.6m x 0.38m) rectangular cryostat to contain the entire spectrograph. The fabrication and assembly of the optical and mechanical components were completed in 2013. We describe the major design characteristics of the instrument including the system requirements and the technical strategy to meet them. We also present early performance test results obtained from the commissioning runs at the McDonald Observatory.
We are designing a sensitive high resolution (R=60,000-100,000) spectrograph for the Giant Magellan Telescope (GMTNIRS, the GMT Near-Infrared Spectrograph). Using large-format IR arrays and silicon immersion gratings, this instrument will cover all of the J (longer than 1.1 μm), H, and K atmospheric windows or all of the L and M windows in a single exposure. GMTNIRS makes use of the GMT adaptive optics system for all bands. The small slits will offer the possibility of spatially resolved spectroscopy as well as superior sensitivity and wavelength coverage. The GMTNIRS team is composed of scientists and engineers at the University of Texas, the Korea Astronomy and Space Science Institute, and Kyung Hee University. In this paper, we describe the optical and mechanical design of the instrument. The principal innovative feature of the design is the use of silicon immersion gratings which are now being produced by our team with sufficient quality to permit designs with high resolving power and broad instantaneous wavelength coverage across the near-IR.
Abstract--The University of Texas Center for Electromechanics (UT-CEM), as a member of the Defense Advanced Research Projects Agency (DARPA) Flywheel Safety and Containment program, has developed a lightweight containment system for high-speed, composite rotors. The containment device, consisting of a rotatable, composite structure has been demonstrated to contain the high-energy release from a rotor burst event and is applicable to composite rotors for pulsed power applications. UT-CEM recently conducted a burst spin test of a composite flywheel inside this composite containment device at Test Devices Incorporated (TDI) of Hudson MA. The most important aspect of this design is that the free-floating containment structure dissipates the major loads (radial, torque, and axial) encountered during the burst event, greatly reducing the loads that pass through the stator structure to its attachments. The design results in significant system-level weight savings for the entire rotating machine when compared to a system with an all-metallic containment. Of equal interest to the containment design, the experimental design and instrumentation was very challenging and resulted in significant lessons learned. This paper describes the containment system design, rotor burst test setup, instrumentation for measuring loads induced by the burst event, and a detailed explanation of the successful containment test results and conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.