Failure to detoxify the intermediary metabolite glyoxylate in human hepatocytes underlies the metabolic pathology of two potentially lethal hereditary calcium oxalate kidney stone diseases, PH (primary hyperoxaluria) types 1 and 2. In order to define more clearly the roles of enzymes involved in the metabolism of glyoxylate, we have established singly, doubly and triply transformed CHO (Chinese-hamster ovary) cell lines, expressing all combinations of normal human AGT (alanine:glyoxylate aminotransferase; the enzyme deficient in PH1), GR/HPR (glyoxylate/hydroxypyruvate reductase; the enzyme deficient in PH2), and GO (glycolate oxidase). We have embarked on the preliminary metabolic analysis of these transformants by studying the indirect toxicity of glycolate as a simple measure of the net intracellular production of glyoxylate. Our results show that glycolate is toxic only to those cells expressing GO and that this toxicity is diminished when AGT and/or GR/HPR are expressed in addition to GO. This finding indicates that we have been able to reconstruct the glycolate-->glyoxylate, glyoxylate-->glycine, and glyoxylate-->glycolate metabolic pathways, catalysed by GO, AGT, and GR/HPR respectively, in cells that do not normally express them. These results are compatible with the findings in PH1 and PH2, in which AGT and GR/HPR deficiencies lead to increased oxalate synthesis, due to the failure to detoxify its immediate precursor glyoxylate. These CHO cell transformants have a potential use as a cell-based bioassay for screening small molecules that stabilize AGT or GR/HPR and might have use in the treatment of PH1 or PH2.
Dominant optic atrophy, Kjer type, is an autosomal dominant disorder causing progressive loss of visual acuity and colour vision from early childhood. The gene (OPA1) has variable expressivity, a penetrance of 0.98, and the locus has been localised to 3q28-29. We have genotyped nine British families with the disease using 12 polymorphic microsatellite markers from this region. Linkage and haplotype analysis shows the OPAl gene to be located in a 2.3 cM interval between markers D3S1601 and D3S2748. One family showed no evidence of linkage with the chromosome 3 markers, suggesting for the first time that locus heterogeneity for this disease may exist, although exclusion for linkage is based on unaffected subjects. In addition, analysis of recombinants has enabled us to order the 12 markers along chromosome 3.(7Med Genet 1997;34:967-972)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.