Forty-five workers at 11 paving sites across the United States were evaluated for exposure to paving asphalt (bitumen) fumes. Traditional measures of exposure such as total particulate matter (TPM) and benzene soluble matter (BSM) were monitored. In addition, total organic matter (TOM), which includes both the BSM residue and the more volatile components that pass through the filter and are collected on sorption material, was quantified and further characterized using a gas chromatography technique and a recently developed fluorescence test. The latter method, which indirectly estimates the content of four- to six-ring polycyclic aromatic compounds, is used as a predictor of carcinogenicity. The correlation between fluorescence emission intensity and carcinogenicity for 36 laboratory generated fume fractions, as measured in a mouse skin-painting bioassay, was then used to estimate the carcinogenic potential of worker monitoring samples. Emission levels, and therefore predicted carcinogenicity, for these samples were at least 17-fold below the value corresponding to a minimal carcinogenic effect. This result was consistent with more extensive chemical analysis (using gas chromatography/mass spectrometry) of two of the samples, which showed the predominant constituents to be alkanes, monocycloparaffins, alkyl-benzenes, alkyl-naphthalenes, and alkyl-benzothiophenes. The geometric mean exposures for all worker studies were 0.21 mg/m3 (TPM), 0.06 mg/m3 (BSM), and 1.23 mg/m3 (TOM).
A subset of polycyclic aromatic compounds (PACs), which contain 4-6 annulated rings, has been documented as the source of carcinogenicity in animal skin painting studies of petroleum products and asphalt fumes (M. L. Machado, P. W. Beatty, J. C. Fetzer, A. H. Glickman and E. L. McGinnis, Fundam. Appl. Toxicol., 1993, 21, 492; T. A. Roy, S. W. Johnson, G. R. Blackburn and C. R. Mackerer, Fundam. Appl. Toxicol., 1988, 10, 466). Because of the chemical complexity of these materials, it has been difficult to identify the specific compounds within this broad range of PACs responsible for their carcinogenicity. An alternative approach using luminescence spectroscopy was taken in this study to quantify, without identification, a subset of these compounds that appears to cause cancer. The fluorescence response at a specific wavelength pair was obtained for 39 laboratory asphalt fume condensates from animal skin painting studies, yielding a linear correlation coefficient of R2 = 0.96 between the fluorescence response in these materials and the carcinogenicity found in animal studies. In the absence of other asphalt fume condensates from animal studies, 17 petroleum oils were also evaluated using this method and compared with the available animal skin painting data. The details of the method include a clean-up step that removes the highly polar compounds and spectral subtraction of two- and three-ring PAC interference, both of which add to the fluorescence response, yet were not found to contribute to a carcinogenic response from skin painting studies. Full scan fluorescence plots also produce a fingerprint which can be used to assess contamination, such as coal tar products or mixtures of materials, that are not defined as asphalt, yet may be present in the working environment.
A novel laboratory asphalt fume generator was developed and validated against fumes collected on personnel monitors from field paving sites and above paving asphalt storage tanks. Once the apparatus was validated, fumes were generated from eight core Strategic Highway Research Program (SHRP) single crude asphalts, as well as from synthetically produced positive and negative control asphalts. The fumes were characterized using a number of analytical techniques, including gas chromatography/mass spectrometry, gas chromatography with flame ionization detection, UV/fluorescence, and a short-term bioassay called the modified Ames test. For comparison purposes, the same methods were applied to fume condensate preparations from the National Institute of Occupational Safety and Health (NIOSH) animal skin-painting studies. On the basis of the chemical and biological tests, these SHRP asphalt fumes were found to have a lower carcinogenic potential than a NIOSH fume fraction found to be noncarcinogenic in the NIOSH studies.
ConclusionThe oxymercuration-demercuration of olefins has previously been shown to be a highly convenient synthetic method for the Markovnikov hydration of olefins. The present paper has demonstrated a wide range of reactivity accompanying variation of olefin structure. Accordingly, considerable selectivity in the monooxymercuration of dienes is expected. Steric
Exposure to asphalt fumes has a threshold limit value (TLV of 0.5 mg m(-3) (benzene extractable inhalable particulate) as recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). This reflects a recent change (2000) whereby two variables are different from the previous recommendation. First is a 10-fold reduction in quantity from 5 mg m(-3) to 0.5 mg m(-3). Secondly, the new TLV specifies the "inhalable" fraction as compared to what is presumed to be total particulate. To assess the impact of these changes, this study compares the differences between measurements of paving asphalt fume exposure in the field using an "inhalable" instrument versus the historically used 'total' sampler. Particle size is also examined to assist in the understanding of the aerodynamic collection differences as related to asphalt fumes and confounders. Results show that when exposures are limited to asphalt fumes, a 1:1 relationship exists between samplers, showing no statistically significant differences in benzene soluble matter (BSM). This means that for the asphalt fume ACGIH TLV, the 'total' 37-mm sampler is an equivalent method to the "inhalable" method, referred to as IOM (Institute of Occupational Medicine), and should be acceptable for use against the TLV. However, the study found that when confounders (dust or old asphalt millings) are present in the workplace, there can be significant differences between the two samplers' reported exposure. The ratio of IOM/Total was 1.37 for milling asphalt sites, 1.41 for asphalt paving over granular base, and 1.02 for asphalt over asphalt pavements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.