Limited information exists regarding soft tissue and hard tissue responses to abutments with different material composition. The aim of this study is to evaluate soft and hard tissue responses to titanium and polymer healing abutments over a 3-month period. Sixteen patients were included in this prospective trial. Implants were provisionalized with either titanium or polymer healing abutments. Changes of marginal bone level and soft tissue dimensions were recorded at implant installation and at 3 months.
Actinobacillus actinomycetemcomitans is a facultatively intracellular pathogen and the aetiological agent of localized aggressive periodontitis. Screening of the genome of A. actinomycetemcomitans for in vivo-induced antigen determinants previously demonstrated that the proteome of this organism differs in laboratory culture compared with conditions found during active infection. The aim of the present study was to determine whether the bacterial gene expression pattern inferred with in vivo-induced antigen technology (IVIAT) in human infections was consistent with the gene expression pattern occurring upon epithelial cell association. To this end, a real-time PCR method was developed and used to quantify absolute and relative bacterial gene expression of A. actinomycetemcomitans grown extra-and intracellularly in two human epithelial cell lines (HeLa and IHGK). The amount of template used in the assay was normalized using the total count of viable bacteria (c.f.u.) as a reference point and performed in duplicate in at least two independent experiments. Controls for this experiment included 16S rRNA and gapdh. Transcription of all eight ORFs tested increased significantly (P , 0 . 05) in HeLa and IHGK cells compared with bacteria grown extracellularly. The concurrence of gene expression patterns found in the two models suggests that these epithelial cells are valid in vitro models of infection for the genes tested. IVIAT is an experimental platform that can be used as a validation tool to assess the reliability of animal and other models of infection and is applicable to most pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.