Ensembles of nitrogen-vacancy (NV) centres in diamond are a leading platform for practical quantum sensors. Reproducible and scalable fabrication of NV-ensembles with desired properties is crucial, as is an understanding of how those properties influence performance. This work addresses these issues by characterising nitrogen-doped diamond produced by the chemical vapour deposition (CVD) method across a range of synthesis conditions. This is shown to produce material with widely differing absorption characteristics, which is linked to the level of defects other than substitutional nitrogen (NS) and NV. In such material, the achievable concentration of NV− ([NV−]) is found to be influenced by the as-grown properties. At the 10–20 ppm level for [NS], the production of CVD-grown material with strain levels sufficient not to limit achievable device sensitivity is demonstrated and a favourable product of [NV−] and
T
2
*
is obtained. Additionally, reproducible properties over a batch of 23 samples from a single synthesis run are achieved, which appears promising for the scalability efforts underway in this area of research.
The focus of this research was to investigate the effect of thermal degradation upon the mechanical properties of a natural rubber compound. We examined both the quasi-static and dynamic mechanical properties of a natural rubber vulcanizate which had been subjected to isothermal, anaerobic aging. The thermal aging was conducted between the temperatures of 80 °C and 120 °C for times ranging from 3 to 24 days. The effect of thermal degradation was measured using the changes in the crosslink distribution of the vulcanizates as functions of time at temperature. A master curve relationship between the crosslink distribution of the vulcanizates due to thermal degradation and the static and dynamic mechanical properties has been developed. It was found that the both the quasi-static and dynamic mechanical properties correlated with the percentage of poly and monosulfidic crosslinks, where in general higher levels of polysulfidic crosslink gave rise to the highest mechanical properties.
Many U.S. Army systems, such as ground vehicles and fully equipped soldiers, are comprised of multiple subcomponents which each typically perform unique functions. Combining these functions into single, multifunctional components could reduce mass and improve overall system efficiency. In particular, creating structural materials that also provide power generating or energy storing capacity could provide significant weight savings over a range of platforms. In this study, structural composite batteries, fuel cells, and capacitors are proposed. To ensure performance benefits, these multifunctional composites are designed so that the materials involved in power and energy processes are also load bearing, rather than simply packaged within monofunctional structural materials. Fabrication and design details for these multifunctional systems, as well as structural and power/energy performance results, are reported. Critical material properties and fabrication considerations are highlighted, and important technical challenges are identified.
Structural lithium-ion batteriesMater. Res. Soc. Symp. Proc. Vol. 851
Ensembles of nitrogen-vacancy (NV) centers in diamond are a leading platform for practical quantum sensors. Reproducible and scalable fabrication of NV-ensembles with desired properties is crucial. This work addresses these challenges by developing a chemical vapor deposition (CVD) synthesis process to produce diamond material at scale with improved NV-ensemble properties for a target NV density. The material reported in this work enables immediate sensitivity improvements for current devices. In addition, techniques established in this work for material and sensor characterization at different stages of the CVD synthesis process provide metrics for future efforts targeting other NV densities or sample geometries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.