Diesel particulate matter (DPM), the solid portion of diesel exhaust, has been linked to a range of deleterious health impacts. While a number of control strategies have been effective at reducing DPM in some environments, exposure risks are still high in others such as underground mines. In prior work, a novel scrubber treatment that used fog to remove DPM from engine exhaust was successfully prototyped in bench-scale laboratory experiments. Here, for the first time, the treatment concept was scaled up and field tested in a stone mine. An exhaust blower was used to pull fog, diesel exhaust, and mine air through a 30.5-meter long tube, enabling coagulation of DPM and fog drops resulting in their subsequent removal. Excluding one of the eleven tests, which appeared to be an outlier, the results showed that this fog-and-tube scrubber removed an average of 63% of particles (11.5-154nm) as compared to 18% in the control case (without fog), yielding an average improvement of 45%. Computer simulations suggest that the observed particle removal is predominantly due to rapid thermal coagulation between the DPM and fog drops, followed by removal of the DPM-laden drops via inertial impaction with the tube walls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.