In this research, sources of methane emissions of an anaerobic digester (AD) system at a municipal wastewater treatment plant (WWTP) with 260,000 population equivalent (PE) capacity were detected by a non-dispersive infrared (NDIR) camera. The located emissions were evaluated qualitatively and were documented with photographs and video films. Subsequently, the emission sources were quantified individually using different methods like the Flux-Chamber method and sampling from the digester's circulation pipe. The dissolved methane in the sludge digester was measured via gas chromatography-mass spectrometry (GC-MS) and 6.8% oversaturation compared to the equilibrium after Henry's law was found. Additionally, the residual gas potential of the digestate was measured using batch tests with 10 days' additional stabilisation time. The PE-specific residual gas production of the full-scale AD was calculated to 12.4 g CH4/(PE · y). An extended chemical oxygen demand (COD) balance including methane emissions for the whole digester system was calculated. Also the measured methane loads were calculated and summed up. The total methane loss of the AD was calculated at 24.6 g CH4/(PE · y), which corresponds to 0.4% of the produced biogas (4,913 g CH4/(PE · y)). PE-specific methane emission factors are presented for each investigated (point) source like the sludge outlet at the digester's head, a leaking manhole sealing and cracks in the concrete structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.