Despite the prevalence and high heritability of Attention-Deficit/Hyperactivity Disorder (ADHD), genetic etiology remains elusive. Clinical evidence points in part to reduced function of the striatum, but which specific genes are differentially expressed and how they sculpt striatal physiology to predispose ADHD are not well understood. As an exploratory tool, a polygenic mouse model of ADHD was recently developed through selective breeding for high home cage activity. Relative to the Control line, the High-Active line displays hyperactivity and motor impulsivity which are ameliorated with amphetamine. This study compared gene expression in the striatum between Control and High-Active mice to develop a coherent hypothesis for how genes might affect striatal physiology and predispose ADHD-like symptoms. To this end, striatal transcriptomes of High-Active and Control mice were analyzed after mice were treated with saline or amphetamines. The pseudogene Gm6180 for n-cofilin (Cfl1) displayed 20-fold higher expression in High-Active mice corresponding with reduced Cfl1 expression suggesting synaptic actin dysregulation. Latrophilin 3 (Lphn3), which is associated with ADHD in human populations and is involved in synapse structure, and its ligand fibronectin leucine rich transmembrane protein 3 (Flrt3), were downregulated in High-Active mice. Multiple genes were altered in High-Active mice in a manner predicted to downregulate the canonical Wnt pathway. A smaller and different set of genes including glyoxalase (Glo1) were differentially regulated in High-Active as compared to Control in response to amphetamine. Together, results suggest genes involved in excitatory synapse regulation and maintenance are downregulated in ADHD-like mice. Consistent with the molecular prediction, stereological analysis of the striatum from a separate set of mice processed for imunohistochemical detection of synaptophysin revealed approximately a 46% reduction in synaptophysin immunoreactivity in High-Active relative to Control. Results provide a new set of molecular targets related to synapse maintenance for the next generation of ADHD medicines.
Early environmental conditions are increasingly appreciated as critical in shaping behavior and cognition. Evidence suggests that stressful rearing environments can have an enduring impact on behaviors in adulthood, but few studies have explored the possibility that rearing environment could exacerbate genetic hyperactivity disorders. Uncovering a strong environmental influence on the transmission of hyperactivity could provide novel avenues for translational research. Recently we developed a selectively bred High-Active line of mice to model ADHD, providing a unique resource to address the question of environmental transmission. The High-Active line demonstrates transgenerational hyperactivity, but the influence of the postnatal environment (i.e. maternal care provided by dams) on hyperactivity had not been systemically quantified. This study employed a cross-fostering method to simultaneously address 1) whether High-Active and Control pups are provided with similar levels of care in the early environment, and 2) whether any differences in rearing environment influence hyperactive behavior. High-Active dams demonstrated impairment in all measures of maternal competence relative to Controls, which reduced survival rates and significantly reduced the body mass of offspring in early life and at weaning. While the deteriorated postnatal environment provided by High-Active dams was ultimately sufficient to depress Control activity, the hyperactivity of High-Active offspring remained unaffected by fostering condition. These data not only confirm the power of genetics to influence hyperactivity across generations, but also provide evidence that early rearing environments may not have a significant impact on the extreme end of hyperactive phenotypes.
Many species display alloparental care, where individuals care for offspring that are not their own, but usually the behavior is contingent on the individual receiving some direct or indirect benefit. In anemonefish, after removing the breeding male, non-breeders have been observed providing care for eggs they did not sire and which are not kin. Previously this behavior was interpreted as coerced by the female. The purpose of this study was to test the alternative hypothesis that the alloparental care occurs spontaneously without prodding by the female. Groups of Amphiprion ocellaris (male, female and non-breeder) were maintained in the laboratory and behavior monitored after removing the male and both the male and female. Non-breeders began to care for eggs after male removal and further increased parental care after male and female removal. Level of care was not as high as experienced males, but additional experiments showed performance increases with experience. In a separate experiment, non-breeders were placed alone in a novel aquarium and eggs from an established spawning pair were introduced. Approximately 30% of the fish displayed extensive fathering behavior within 90 min. Taken together, our results demonstrate that fathering behavior in A. ocellaris occurs spontaneously, independent of paternity or kinship. Alloparental care, where individuals care for offspring that are not their immediate descendants occurs with reasonable frequency in nature 1-6. However, usually the behavior is actively reinforced by the breeding individuals or contingent on their presence. For instance, in the cooperative breeding cichlid, Neolamprologus pulcher, unrelated subordinates assist the dominant pair in reproduction, otherwise they would be chased out of the territory by the larger breeding pair 5,7. Similarly, in anemonefish Amphiprion clarkii, subordinate, non-breeders care for eggs they did not sire and which are not kin, and the behavior is explained as being coerced by the presence of the dominant female 8. However, anemonefish have a peculiar life history which may have provided the right context for the appearance of unconditional, spontaneous fathering behavior independent of paternity or experience. Anemonefish, or clownfish, are an iconic group of coral reef fish, beloved by the aquarium hobby, and as such their life history has been studied for decades and extensively reviewed elsewhere 9,10. Anemonefish, such as A. clarkii, and especially A. ocellaris, typically live in small groups consisting of one alpha female and one beta male which reproduce together exclusively (i.e., genetic monogamy) plus zero to several gamma non-reproductive subordinates 11,12. The reproductively suppressed gamma individuals are sexually immature 13,14. However, they can rapidly acquire male reproductive potential if the male is removed 15. These gamma individuals are tolerated by the breeding pair and maintain their own dominance hierarchy below the breeders 16. They do not normally provide care towards the eggs and are usually cha...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.