We develop a new concept to impart new functions to biocatalysts by combining enzymes and metal-organic frameworks (MOFs). The proof-of-concept design is demonstrated by embedding catalase molecules into uniformly sized ZIF-90 crystals via a de novo approach. We have carried out electron microscopy, X-ray diffraction, nitrogen sorption, electrophoresis, thermogravimetric analysis, and confocal microscopy to confirm that the ~10 nm catalase molecules are embedded in 2 μm single-crystalline ZIF-90 crystals with ~5 wt % loading. Because catalase is immobilized and sheltered by the ZIF-90 crystals, the composites show activity in hydrogen peroxide degradation even in the presence of protease proteinase K.
We show that an enzyme maintains its biological function under a wider range of conditions after being embedded in metal-organic framework (MOF) microcrystals via a de novo approach. This enhanced stability arises from confinement of the enzyme molecules in the mesoporous cavities in the MOFs, which reduces the structural mobility of enzyme molecules. We embedded catalase (CAT) into zeolitic imidazolate frameworks (ZIF-90 and ZIF-8), and then exposed both embedded CAT and free CAT to a denature reagent (i.e., urea) and high temperatures (i.e., 80 °C). The embedded CAT maintains its biological function in the decomposition of hydrogen peroxide even when exposed to 6 M urea and 80 °C, with apparent rate constants k (s) of 1.30 × 10 and 1.05 × 10, respectively, while free CAT shows undetectable activity. A fluorescence spectroscopy study shows that the structural conformation of the embedded CAT changes less under these denaturing conditions than free CAT.
Encapsulating
well-defined nanoparticle catalysts into porous materials
to form a core–shell nanostructure can enhance the durability,
selectivity, or reactivity of the catalysts and even provide additional
functionalities to the catalysts. Using metal–organic frameworks
(MOFs) as the encapsulating porous materials has drawn great interest
recently because MOFs, as a class of crystalline nanoporous materials,
have well-defined pore structures and unique chemical properties.
Also, the structures and properties of MOFs are tunable. In this perspective
review, we examine recent progress in the development of synthetic
methods for metal@MOF core–shell nanostructures as catalysts.
Potential directions in the field are also discussed.
Under linker exchange conditions, large guests with molecular diameters 3-4 times the framework aperture size have been encapsulated into preformed nanocrystals of the metal-organic framework ZIF-8. Guest encapsulation is facilitated by the formation of short-lived "open" states of the pores upon linker dissociation. Kinetic studies suggested that linker exchange reactions in ZIF-8 proceed via a competition between dissociative and associative exchange mechanisms, and guest encapsulation was enhanced under conditions where the dissociative pathway predominates.
We demonstrate a molecular-level observation of driving CO molecules into a quasi-condensed phase on the solid surface of metal nanoparticles (NP) under ambient conditions of 1 bar and 298 K. This is achieved via a CO accumulation in the interface between a metal-organic framework (MOF) and a metal NP surface formed by coating NPs with a MOF. Using real-time surface-enhanced Raman scattering spectroscopy, a >18-fold enhancement of surface coverage of CO is observed at the interface. The high surface concentration leads CO molecules to be in close proximity with the probe molecules on the metal surface (4-methylbenzenethiol), and transforms CO molecules into a bent conformation without the formation of chemical bonds. Such linear-to-bent transition of CO is unprecedented at ambient conditions in the absence of chemical bond formation, and is commonly observed only in pressurized systems (>10 bar). The molecular-level observation of a quasi-condensed phase induced by MOF coating could impact the future design of hybrid materials in diverse applications, including catalytic CO conversion and ambient solid-gas operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.