Nations using borosilicate glass as an immobilization material for radioactive waste have reinforced the importance of scientific collaboration to obtain a consensus on the mechanisms controlling the long-term dissolution rate of glass. This goal is deemed to be crucial for the development of reliable performance assessment models for geological disposal. The collaborating laboratories all conduct fundamental and/or applied research using modern materials science techniques. This paper briefly reviews the radioactive waste vitrification programs of the six participant nations and summarizes the current state of glass corrosion science, emphasizing the common scientific needs and justifications for on-going initiatives
Chemical durability is not a single material property that can be uniquely measured. Instead, it is the response to a host of coupled material and environmental processes whose rates are estimated by a combination of theory, experiment and modeling. High‐level nuclear waste (HLW) glass is perhaps the most studied of any material yet there remain significant technical gaps regarding their chemical durability. The phenomena affecting the long‐term performance of HLW glasses in their disposal environment include surface reactions, transport properties to and from the reacting glass surface, and ion exchange between the solid glass and the surrounding solution and alteration products. The rates of these processes are strongly influenced and are coupled through the solution chemistry, which is in turn influenced by the reacting glass and also by reaction with the near‐field materials and precipitation of alteration products. Therefore, those processes must be understood sufficiently well to estimate or bound the performance of HLW glass in its disposal environment over geologic time scales. This article summarizes the current state of understanding of surface reactions, transport properties and ion exchange along with the near‐field materials and alteration products influences on solution chemistry and glass reaction rates. Also summarized are the remaining technical gaps along with recommended approaches to fill those technical gaps.
International Simple Glass -a six oxide borosilicate glass selected by the international nuclear glass community to improve the understanding of glass corrosion mechanisms and kinetics -was altered at 90°C in a solution initially saturated with respect to amorphous 29 SiO 2 . The pH 90°C , was fixed at 9 at the start of the experiment and raised to 11.5 after 209 d by the addition of KOH. Isotope sensitive analytical techniques were used to analyze the solution and altered glass samples, helping to understand the driving forces and rate limiting processes controlling long-term glass alteration. At pH 9, the corrosion rate continuously drops and the glass slowly transforms into a uniform, homogeneous amorphous alteration layer. The mechanisms responsible for this transformation are water penetration through the growing alteration layer and ion exchange. We demonstrate that this amorphous alteration layer is not a precipitate resulting from the hydrolysis of the silicate network; it is mostly inherited from the glass structure from which the most weakly bonded cations (Na, Ca and B) have been released. At pH 11.5, the alteration process is very different: the high solubility of glass network formers (Si, Al, Zr) triggers the rapid and complete dissolution of the glass (dissolution becomes congruent) and precipitation of amorphous and crystalline phases. Unlike at pH 9 where glass corrosion rate decreased by 3 orders of magnitude likely due to the retroaction of the alteration layer on water dynamics/reactivity at the reaction front, the rate at pH 11.5 is maintained at a value close to the forward rate due to both the hydrolysis of the silicate network promoted by OHand the precipitation of CSH and zeolites. This study provides key information for a unified model for glass dissolution.As a result of the complex suite of corrosion processes listed above (hydration, interdiffusion, hydrolysis, condensation, precipitation), the dissolution of glass is rarely congruent. This means that, in addition to soluble species directly released into the solution, solid products are also formed. The 157 167
SiGlass surface at t = 0
All materials can suffer from environmental degradation; the rate and extent of degradation depend on the details of the material composition and structure as well as the environment. The corrosion of silicate glasses, crystalline ceramics, and metals, particularly as related to nuclear waste forms, has received a lot of attention. The corrosion phenomena and mechanisms of these materials are different, but also have many similarities. This review compares and contrasts the mechanisms of environmental degradation of glass, crystalline ceramics, and metals, with the goal of identifying commonalities that can seed synergistic activities and advance the current knowledge in each area.npj Materials Degradation (2018) 2:15 ; doi:10.1038/s41529-018-0037-2
INTRODUCTIONNew research activity focused on the environmental degradation of silicate glasses, crystalline ceramics, and metals relevant to nuclear waste forms and containers has recently been described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.