The generation of T cell immunity requires the acquisition and presentation of Ag on bone marrow-derived APCs. Dendritic cells (DC) are believed to be the most potent bone marrow-derived APCs, and the only ones that can stimulate naive T cells to productively respond to Ags. Because macrophages (MΦ) are bone marrow-derived APCs that are also found in tissues and lymphoid organs, can acquire and present Ag, and can express costimulatory molecules, we have investigated their potential to stimulate primary T cell responses in vivo. We find that both injected MΦ and DCs can migrate from peripheral tissues or blood into lymphoid organs. Moreover, injection of peptide-pulsed MΦ or DCs into mice stimulates CD8 T cells to proliferate, express effector functions including cytokine production and cytolysis, and differentiate into long-lived memory cells. MΦ and DCs stimulate T cells directly without requiring cross-presentation of Ag on host APCs. Therefore, more than one type of bone marrow-derived APC has the potential to prime T cell immunity. In contrast, another bone marrow-derived cell, the T lymphocyte, although capable of presenting Ag and homing to the T cell areas of lymphoid organs, is unable to stimulate primary responses. Because MΦ can be very abundant cells, especially at sites of infection and inflammation, they have the potential to play an important role in immune surveillance and the initiation of T cell immunity.
Dendritic cell (DC) activation by nucleic acid-containing IgG complexes is implicated in systemic lupus erythematosus (SLE) pathogenesis. However, it has been difficult to definitively examine the receptors and signaling pathways by which this activation is mediated. Because mouse FcγRs recognize human IgG, we hypothesized that IgG from lupus patients might stimulate mouse DCs, thereby facilitating this analysis. In this study, we show that sera and purified IgG from lupus patients activate mouse DCs to produce IFN-α, IFN-β, and IL-6 and up-regulate costimulatory molecules in a FcγR-dependent manner. This activation is only seen in sera with reactivity against ribonucleoproteins and is completely dependent on TLR7 and the presence of RNA. As anticipated, IFN regulatory factor (IRF)7 is required for IFN-α and IFN-β production. Unexpectedly, however, IRF5 plays a critical role in IFN-α and IFN-β production induced not only by RNA-containing immune complexes but also by conventional TLR7 and TLR9 ligands. Moreover, DC production of IL-6 induced by these stimuli is dependent on a functional type I IFNR, indicating the need for a type I IFN-dependent feedback loop in the production of inflammatory cytokines. This system may also prove useful for the study of receptors and signaling pathways used by immune complexes in other human diseases.
We have found that CD11b, a cell surface integrin of macrophages, granulocytes, and NK cells, is expressed by a subset of CD8+ T cells that include both the active virus-specific CTL and the virus-specific memory CTL populations. CD8+CD11b+ cells comprise less than 3% of naive mouse splenocytes, but after lymphocytic choriomeningitis virus (LCMV) infection increase by 9- to 12-fold by the peak (day 8) of the virus-specific CTL response. Depletion of day-8 splenocytes with anti-Mac-1 and C' or enrichment by sorting for CD11b+ or CD8+CD11b+ spleen cells demonstrated that LCMV-specific CTL are CD11b+. The CD11b+ subpopulation also contained the bulk of the IL-2-responsive CD8+ cells. MEL-14, a homing marker down-regulated on activated T cells, was down-regulated on the majority of CD8+ cells that became CD11b+. Less than 1% of LCMV-immune splenic lymphocytes expressed CD11b. Antibody and C' depletion of this population severely impaired the ability of immune splenocytes to respond to in vitro secondary stimulation with LCMV-infected peritoneal macrophages, but did not affect the generation of a primary allospecific CTL response in MLC. Mixing of CD8-depleted and CD11b-depleted LCMV-immune splenocytes failed to restore the ability of these cells to mount a virus-specific memory CTL response, indicating that a cell coexpressing CD8 and CD11b is essential for this response. As determined by limiting dilution analysis, the precursors for the LCMV-specific memory CTL response were enriched in the CD11b+ population of LCMV-immune splenocytes. CD11b stained far fewer CD8+ splenocytes from naive mice than did CD44 (Pgp-1), and among immune splenocytes it identified a small subpopulation of CD44hi cells, indicating that CD11b may be the best single marker available for discriminating between naive and memory CD8+ T cells.
The rates of mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1), progression to AIDS following HIV-1 infection, and AIDS-associated mortality are all inversely correlated with serum vitamin A levels (R. D. Semba, W. T. Caiaffa, N. M. H. Graham, S. Cohn, and D. Vlahov, J. Infect. Dis. 171:1196–1202, 1995; R. D. Semba, N. M. H. Graham, W. T. Caiaffa, J. B. Margolik, L. Clement, and D. Vlahov, Arch. Intern. Med. 153:2149–2154, 1993; R. D. Semba, P. G. Miotti, J. D. Chiphangwi, A. J. Saah, J. K. Canner, G. A. Dallabetta, and D. R. Hoover, Lancet 343:1593–1596, 1994). Here we show that physiological concentrations of vitamin A, as retinol or as its metabolite, all-trans retinoic acid, repressed HIV-1Ba-L replication in monocyte-derived macrophages (MDMs). Repression required retinoid treatment of peripheral monocytes during their in vitro differentiation into MDMs. Retinoids had no repressive effect if they were added after virus infection. Retinol, as well as all-trans retinoic acid and 9-cisretinoic acid, also repressed HIV-1 long terminal repeat (LTR)-directed expression up to 200-fold in transfected THP-1 monocytes. Analysis of HIV-1 LTR deletion mutants demonstrated that retinoids were able to repress activation of HIV-1 expression by both NF-κB and Tat. Acis-acting sequence required for retinoid-mediated repression of HIV-1 transcription was localized between nucleotides −51 and +12 of the HIV-1 LTR within the core promoter. Protein-DNA cross-linking experiments identified four proteins specific to retinoid-treated cells that bound to the core promoter. We conclude that retinoids render macrophages resistant to virus replication by modulating the interaction of cellular transcription factors with the viral core promoter.
We have developed a chemical modification of antibodies, lipidation, which enables their intracellular delivery into living cells. Intracellular localization of lipidated antibodies was demonstrated by confocal microscopy and by measuring cellular uptake of 125I-labeled lipidated antibodies. Functionally, a lipidated monoclonal antibody directed against the Tat protein from human immunodeficiency virus type 1 (HIV-1) inhibited viral replication of several HIV-1 isolates by approximately 85% as shown by increased viability of infected cells and decreased reverse transcriptase activity. The antibody in its native form had no such effect. These data show that lipidated antibodies can reach and functionally inhibit intracellular targets. Lipidation may help to facilitate the development of intracellular immunotherapy for AIDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.