Patients with aneurysmal subarachnoid hemorrhage (SAH) frequently have deficits in learning and memory that may or may not be associated with detectable brain lesions. We examined mediators of long-term potentiation after SAH in rats to determine what processes might be involved. There was a reduction in synapses in the dendritic layer of the CA1 region on transmission electron microscopy as well as reduced colocalization of microtubule-associated protein 2 (MAP2) and synaptophysin. Immunohistochemistry showed reduced staining for GluR1 and calmodulin kinase 2 and increased staining for GluR2. Myelin basic protein staining was decreased as well. There was no detectable neuronal injury by Fluoro-Jade B, TUNEL, or activated caspase-3 staining. Vasospasm of the large arteries of the circle of Willis was mild to moderate in severity. Nitric oxide was increased and superoxide anion radical was decreased in hippocampal tissue. Cerebral blood flow, measured by magnetic resonance imaging, and cerebral glucose metabolism, measured by positron emission tomography, were no different in SAH compared with control groups. The results suggest that the etiology of loss of LTP after SAH is not cerebral ischemia but may be mediated by effects of subarachnoid blood such as oxidative stress and inflammation.
Delayed complications of subarachnoid hemorrhage (SAH) such as angiographic vasospasm, cortical spreading ischemia, microcirculatory dysfunction, and microthrombosis are reported in both patients and animal models of SAH. We demonstrated previously that SAH is associated with increased oxidative stress in the brain parenchyma, and that this correlates with dysfunction of endothelial nitric oxide synthase (eNOS) (homodimeric uncoupling). Uncoupling of eNOS exacerbated oxidative stress and enhanced nitric oxide (NO) depletion, and was associated with multiple secondary complications such as microthrombosis, neuronal apoptosis, and release of reactive oxygen species. Thus, we hypothesized that genetic abbrogation of eNOS would confer a beneficial effect on the brain after SAH. Using a prechiasmatic injection model of SAH, we show here that eNOS knockout (KO) significantly alleviates vasospasm of the middle cerebral artery and reduces superoxide production. Endothelial nitric oxide synthase KO also affected other nitric oxide synthase isoforms. It significantly increases neuron nitric oxide synthase expression but has no effect on inducible nitric oxide synthase. Endothelial nitric oxide synthase KO decreases Zn 2 þ release after SAH, reduces microthrombi formation, and prevent neuronal degeneration. This work is consistent with our findings where, after SAH, increased oxidative stress can uncouple eNOS via Zn 2 þ thiolate oxidation, or theoretically by depletion or oxidation of tetrahydrobiopterin, resulting in a paradoxical release of superoxide anion radical, further exacerbating oxidative stress and microvascular damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.