Bamboo cellulose was prepared by chemical process involving dewaxing, delignification, and mercerization process. Four samples namely, green bamboo fiber (GBF), dewaxed bamboo fiber (DBF), delignified bamboo fiber (DLBF), and cellulose fiber (CF) had been analysed. FTIR and TGA analysis confirmed the removal of hemicellulose and lignin at the end stage of the process. FTIR results reveal that the D-cellulose OH group occurred at 1639 cm−1region. SEM micrograph showed that mercerization leads to fibrillation and breakage of the fiber into smaller pieces which promote the effective surface area available for contact. Barrer, Joiyner, and Halenda (BJH) method confirmed that the effective surface area of CF is two times larger compared to GBF. CF showed the highest activation energy compared to GBF. It indicates that CF was thermally stable.
The tensile properties of chemically treated jute fiber reinforced polyethylene/clay nanocomposites were investigated. Nanocomposites were prepared using hot press moulding technique by varying jute fiber loading (5, 10, 15 and 20 wt%) for both treated and untreated fibers. Raw jute fibers were chemically treated with benzene diazonium salt to increase their compatibility with the polyethylene matrix. Physical and mechanical properties were subsequently characterized. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) analysis was utilized to study physical properties. Tensile test was conducted for mechanical characterization. FTIR and SEM study showed interfacial interaction among jute fiber, polyethylene and nanoclay. It was observed that at optimum fiber content (15 wt%), treated composites exhibited improvements in tensile strength and modulus by approximately 20 % and 37 % respectively over the raw ones. On the other hand, this composite exhibited improvements in tensile strength and modulus by approximately 8 % and 15 % respectively over the composites without nanoclay. However, treated jute fiber reinforced composites showed better tensile properties compared with untreated ones and also nanoclay incorporated composites enhanced higher tensile properties compared without nanoclay ones.
a b s t r a c tNanoclay is considered potential nanofiller for the manufacturing of natural fiber nanocomposites. The hydrophilic nature of natural fibers affects negatively its adhesion to hydrophobic polymer matrix. In the present study, propionic anhydride (PA) treated jute were used for the manufacturing of jute/ polyethylene/nanoclay nanocomposites. Different amount (wt%) of montmorillonite (MMT) were used as nanofiller in order to optimize the nanoclay in the composite system. Finally, the nanocomposites were prepared using hot press machine at 5, 10, 15, and 20 wt% fiber loadings. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), tensile tests, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and chemical resistance test were used to evaluate the morphological, thermo-mechanical and chemical resistance properties of the composites.
In the present study, batai wood (Paraserianthes moluccana) was impregnated with a combination of styrene, methyl methacrylate, and nanoclay in order to improve compression strength, thermal stability, and surface morphology. Styrene (ST) and methyl methacrylate (MMA) cross-linker introduced a co-polymerization reaction with cellulose in the wood cell wall and produced wood polymer composites (WPCs), as confirmed by Fourier Transform Infrared (FT-IR) Spectroscopy. The mechanical properties of the WPCs were significantly increased compared to the raw wood. Thermal properties of both raw wood and WPCs were evaluated by thermogravimetric analysis (TGA). WPCs exhibited higher thermal stability relative to the raw wood due to the copolymerization reaction. The surface morphologies of the fracture surface for both the raw wood and WPCs were recorded using scanning electron microscopy (SEM). The SEM micrographs reveal that after polymerization, WPCs show smoother texture and adhesion compared to that of raw wood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.