Recent studies have implicated reactive oxygen species (ROS) in the pathogenesis of hypertension and activation of the sympathetic nervous system (SNS). Because nitric oxide (NO) exerts a tonic inhibition of central SNS activity, increased production of ROS could enhance inactivation of NO and result in activation of the SNS. To test the hypothesis that ROS may modulate SNS activity, we infused Tempol (4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl), a superoxide dismutase mimetic, or vehicle either intravenously (250 microg x kg(-1) x min(-1)) or in the lateral ventricle (50 microg x kg body wt(-1) x min(-1)), and we determined the effects on blood pressure (BP), norepinephrine (NE) secretion from the posterior hypothalamus (PH) measured by the microdialysis technique, renal sympathetic nerve activity (RSNA) measured by direct microneurography, the abundance of neuronal NO synthase (nNOS)-mRNA in the PH, paraventricular nuclei (PVN), and locus coeruleus (LC) measured by RT-PCR, and the secretion of nitrate/nitrite (NO(x)) in the dialysate collected from the PH of Sprague-Dawley rats. Tempol reduced BP whether infused intravenously or intracerebroventricularly. Tempol reduced NE secretion from the PH and RSNA when infused intracerebroventricularly but raised NE secretion from the PH and RSNA when infused intravenously. The effects of intravenous Tempol on SNS activity were blunted or abolished by sinoaortic denervation. Tempol increased the abundance of nNOS in the PH, PVN, and LC when infused intracerebroventricularly, but it decreased the abundance of nNOS when infused intravenously. When given intracerebroventricularly, Tempol also reduced the concentration of NO(x) in the dialysate collected from the PH. Pretreatment with N(omega)-nitro-l-arginine methyl ester did not abolish the effects of intracerebral Tempol on BP, heart rate, NE secretion from the PH, and RSNA suggesting that the effects of Tempol on SNS activity may be in part dependent and in part independent of NO. In all, these studies support the notion that ROS may raise BP via activation of the SNS. This activation may be mediated in part by downregulation of nNOS and NO production, in part by mechanisms independent of NO. The discrepancy in results between intracerebroventricular and intravenous infusion of Tempol can be best explained by direct inhibitory actions on SNS activity when given intracerebral. By contrast, Tempol may exert direct vasodilation of the peripheral circulation and reflex activation of the SNS when given intravenously.
Prior work in animals suggests that muscle mechanoreceptor control of sympathetic activation (MSNA) during exercise in heart failure (HF) is heightened and that muscle mechanoreceptors are sensitized by metabolic by-products. We sought to determine whether 1) muscle mechanoreceptor control of MSNA is enhanced in HF patients and 2) lactic acid sensitizes muscle mechanoreceptors during rhythmic handgrip (RHG) exercise in healthy humans and patients with HF. Dichloroacetate (DCA), which reduces the production of lactic acid, or saline control was infused in 12 patients with HF and 13 controls during RHG. MSNA was recorded (microneurography). After saline was administered and during exercise thereafter, MSNA increased earlier in HF compared with controls, consistent with baseline-heightened mechanoreceptor sensitivity. In both HF and controls, MSNA increased during the 3-min exercise protocol, consistent with further sensitization of muscle mechanoreceptors by metabolic by-product(s). During posthandgrip circulatory arrest, MSNA returned rapidly to baseline levels, excluding the muscle metaboreceptors as mediators of the sympathetic excitation during RHG. To isolate muscle mechanoreceptors from central command, we utilized passive exercise in 8 HF and 11 controls, and MSNA was recorded. MSNA increased significantly during passive exercise in HF but not in controls. In conclusion, muscle mechanoreceptors mediate the increase in MSNA during low-level RHG exercise in healthy humans, and this muscle mechanoreceptor control is augmented further in HF. Neither lactate generation nor the fall in pH during RHG plays a central role in muscle mechanoreceptor sensitization. Finally, muscle mechanoreceptors in patients with HF have heightened basal sensitivity to mechanical stimuli resulting in exaggerated early increases in MSNA.
Evidence in healthy animals and humans is accumulating that the muscle mechanoreceptors play an important role in mediating sympathetic activation during exercise, especially rhythmic exercise. Furthermore, muscle mechanoreceptors appear to be sensitized acutely during exercise by metabolic by-products, although the identity of these by-products remains unknown. The purpose of this study was to determine whether the metabolic by-products 1) prostaglandins and/or 2) adenosine sensitize muscle mechanoreceptor control of muscle sympathetic nerve activity (MSNA) in normal humans during rhythmic exercise. MSNA was recorded using microneurography. Muscle mechanoreceptors were activated by low-level rhythmic forearm exercise for 3 min. In 16 healthy humans, intra-arterial indomethacin was infused into the exercising arm to inhibit synthesis of cyclooxygenase products. In 18 healthy humans, intra-arterial aminophylline was infused into the exercising arm to block adenosine receptors. During saline control, MSNA increased significantly during exercise. Inhibition of cyclooxygenase during exercise dramatically and virtually completely eliminated the reflex sympathetic activation. Inhibition of adenosine receptors with aminophylline had no effect on the sympathetic activation during muscle mechanoreceptor stimulation. In conclusion, muscle mechanoreceptors are sensitized by cyclooxygenase products, but not by adenosine, during 3 min of low-level rhythmic handgrip exercise in healthy humans. Further studies of other metabolic by-products and of patients with enhanced muscle mechanoreceptor sensitivity, such as patients with heart failure, are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.