Climate change is pushing species ranges and abundances towards the poles and mountain tops. Although many studies have documented local altitudinal shifts, knowledge of general patterns at a large spatial scale, such as a whole mountain range, is scarce. From a conservation perspective, studying altitudinal shifts in wildlife is relevant because mountain regions often represent biodiversity hotspots and are among the most vulnerable ecosystems. Here, we examine whether altitudinal shifts in birds’ abundances have occurred in the Scandinavian mountains over 13 years, and assess whether such shifts are related to species’ traits. Using abundance data, we show a clear pattern of uphill shift in the mean altitude of bird abundance across the Scandinavian mountains, with an average speed of 0.9 m per year. Out of 76 species, 7 shifted significantly their abundance uphill. Altitudinal shift was strongly related to species’ longevity: short-lived species showed more pronounced uphill shifts in abundance than long-lived species. The observed abundance shifts suggest that uphill shifts are not only driven by a small number of individuals at the range boundaries, but the overall bird abundances are on the move. Overall, the results underscore the wide-ranging impact of climate change and the potential vulnerability of species with slow life histories, as they appear less able to timely respond to rapidly changing climatic conditions.
Climate change is pushing species ranges towards poles and mountain tops. Although many studies have documented local altitudinal shifts, knowledge of general patterns at a large spatial scale, such as a whole mountain range, is very limited. From a conservation perspective, studying altitudinal shifts is particularly important as mountain regions often represent biodiversity hotspots and are among the most vulnerable ecosystems. Here, we examine whether altitudinal shifts have occurred among birds in the Scandinavian mountains over 13 years and assess whether such shifts are related to species’ traits. Using abundance data, we show a clear pattern of uphill shifts in the mean altitudes of the bird species’ abundances across the Scandinavian mountains, with an average speed of 0.9 m per year. Out of 77 species, 54 shifted their ranges uphill. In general, the range shift was faster when the altitudinal range within the area was wider. Importantly, the altitudinal shift was strongly related to species’ longevity: short-lived species showed more pronounced altitudinal uphill shifts than long-lived species. Our results show that the altitudinal range shifts are not only driven by a small number of individuals at the range boundaries, but the overall bird abundances are on the move. This highlights the wide-ranging impact of climate change and the potential vulnerability of species with slow life-histories, as they appear unable to timely respond to rapidly changing climatic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.