This study investigates the corrosion mechanism on 100 wt.% MgO and 95 wt.% MgO with 5 wt.% nano-ZrO2 ceramic composites. First, MgO powder and powder mixtures (MgO + nano ZrO2) were uniaxially and isostatically pressed; then, they were sintered at 1650 °C. Corrosion by copper slag was studied in sintered samples. Physical properties, microstructure, and penetration of the slag in the refractory were studied. Results reveal that ZrO2 nanoparticles enhanced the samples’ densification, promoting grain growth due to diffusion of vacancies during the sintering process. Additionally, magnesia bricks were severely corroded, if compared with those doped with nano-ZrO2, mainly due to the dissolution of MgO grains during the chemical attack by copper slag.
This work proposed a base method for automated assessment of Small Hydro-Power (SHP) potential for a run-of-river (RoR) scheme using geographic information systems (GIS). The hydro-power potential (HP) was represented through a comprehensive methodology consisting of a structured raster database. A calibrated and validated hydrological model (Soil and Water Assessment Tool—SWAT) was used to estimate monthly streamflow as the Mesh Sweeping Approach (MSA) driver. The methodology was applied for the upper part of the Huazuntlan River Watershed in Los Tuxtlas Mountains, Mexico. The MSA divided the study area into a rectangular mesh. Then, at every location within the mesh, SHP was obtained. The main components of the MSA as a RoR scheme were the intake, the powerhouse, and the surge tank. The surge tank was located at cells where the hydro-power was calculated and used as a reference to later locate the intake and powerhouse by maximizing the discharge and head. SHP calculation was performed by sweeping under different values of the penstock’s length, and the headrace’s length. The maximum permissible lengths for these two variables represented potential hydro-power generation locations. Results showed that the headrace’s length represented the major contribution for hydro-power potential estimation. Additionally, values of 2000 m and 1500 m for the penstock and the headrace were considered potential thresholds as there is no significant increment in hydro-power after increasing any of these values. The availability of hydro-power on a raster representation has advantages for further hydro-power data analysis and processing.
Land use and land cover (LULC) change has become an important research topic for global environmental change and sustainable development. As an important part of worldwide land conservation, sustainable development and management of water resources, developing countries must ensure the use of innovative technology and tools that support their various decision making systems. This study provides the most recent LULC change analysis for the last six years (2015–2021) of Coatzacoalcos, Veracruz, Mexico, one of the most important petrochemical cities in the world and host of the ongoing Interoceanic Corridor project. The analysis was carried out using Landsat 8 Operational Land Imager (OLI) satellite images, ancillary data and ground-based surveys and the Normalized Difference Vegetation Index (NDVI) to identify and to ameliorate the discrimination between four main macro-classes and fourteen classes. The LULC classification was performed using the maximum likelihood classifier (MLC) to produce maps for each year, as it was found to be the best approach when compared to minimum distance (MDM) and spectral angle mapping (SAM) methods. The macro-classes were water, built-up, vegetation and bare soil, whereas the classes were an improved classification within those. Our study achieved both user accuracy (UA) and producer accuracy (PA) above 90% for the proposed macro-classes and classes. The average Kappa coefficient for macro-classes was 0.93, while for classes it was 0.96, both comparable to previous studies. The results from the LULC analysis show that residential, industry and commercial areas slowed down their growth throughout the study period. These changes were associated with socio-economical drivers such as insecurity and lack of economic investments. Groves and trees presented steady behaviors, with small increments during the five-year period. Swamps, on the other hand, significantly degraded, being about 2% of the study area in 2015 and 0.93% in 2021. Dunes and medium and high vegetation densities (∼80%) transitioned mostly to low vegetation densities. This behavior is associated with rainfall below the annual reference and increments of surface runoff due to the loss of vegetation cover. Lastly, the present study seeks to highlight the importance of remote sensing for a better understanding of the dynamics between human–nature interactions and to provide information to assist planners and decision-makers for more sustainable land development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.