Direct numerical simulations are performed of a confined three-dimensional, temporally developing, initially isothermal gas mixing layer with one stream laden with as many as 7.3×10 5 evaporating hydrocarbon droplets, at moderate gas temperature and subsonic Mach number. Complete two-way phase couplings of mass, momentum and energy are incorporated which are based on a thermodynamically self-consistent specification of the vapour enthalpy, internal energy and latent heat of vaporization. Effects of the initial liquid mass loading ratio (ML), initial Stokes number (St 0 ), initial droplet temperature and flow three-dimensionality on the mixing layer growth and development are discussed. The dominant parameter governing flow modulation is found to be the liquid mass loading ratio. Variations in the initial Stokes number over the range 0.5 6 St 0 6 2.0 do not cause significant modulations of either first-or second-order gas phase statistics. The mixing layer growth rate and kinetic energy are increasingly attenuated for increasing liquid loadings in the range 0 6 ML 6 0.35. The laden stream becomes saturated before evaporation is completed for all but the smallest liquid loadings owing to: (i) latent heat effects which reduce the gas temperature, and (ii) build up of the evaporated vapour mass fraction. However, droplets continue to be entrained into the layer where they evaporate owing to contact with the relatively higher-temperature vapour-free gas stream. The droplets within the layer are observed to be centrifuged out of high-vorticity regions and to migrate towards high-strain regions of the flow. This results in the formation of concentration streaks in spanwise braid regions which are wrapped around the periphery of secondary streamwise vortices. Persistent regions of positive and negative slip velocity and slip temperature are identified. The velocity component variances in both the streamwise and spanwise directions are found to be larger for the droplets than for the gas phase on the unladen stream side of the layer; however, the cross-stream velocity and temperature variances are larger for the gas. Finally, both the mean streamwise gas velocity and droplet number density profiles are observed to coincide for all ML when the cross-stream coordinate is normalized by the instantaneous vorticity thickness; however, first-order thermodynamic profiles do not coincide.
Direct numerical simulations (DNS) of a supercritical temporal mixing layer are conducted for the purpose of exploring the characteristics of high-pressure transitional mixing behaviour. The conservation equations are formulated according to fluctuation-dissipation (FD) theory, which is consistent with non-equilibrium thermodynamics and converges to kinetic theory in the low-pressure limit. According to FD theory, complementing the low-pressure typical transport properties (viscosity, diffusivity and thermal conductivity), the thermal diffusion factor is an additional transport property which may play an increasingly important role with increasing pressure. The Peng-Robinson equation of state with appropriate mixing rules is coupled to the dynamic conservation equations to obtain a closed system. The boundary conditions are periodic in the streamwise and spanwise directions, and of non-reflecting outflow type in the cross-stream direction. Due to the strong density stratification, the layer is considerably more difficult to entrain than equivalent gaseous or droplet-laden layers, and exhibits regions of high density gradient magnitude that become very convoluted at the transitional state. Conditional averages demonstrate that these regions contain predominantly the higher-density, entrained fluid, with small amounts of the lighter, entraining fluid, and that in these regions the mixing is hindered by the thermodynamic properties of the fluids. During the entire evolution of the layer, the dissipation is overwhelmingly due to species mass flux followed by heat flux effects with minimal viscous contribution, and there is a considerable amount of backscatter in the flow. Most of the species mass flux dissipation is due to the molecular diffusion term with significant contributions from the cross-term proportional to molecular and thermal diffusion. These results indicate that turbulence models for supercritical fluids should primarily focus on duplicating the species mass flux rather than the typical momentum flux, which constitutes the governing dissipation in atmospheric mixing layers. Examination of the passive-scalar probability density functions (PDFs) indicates that neither the Gaussian, nor the beta PDFs are able to approximate the evolution of the DNSextracted PDF from its inception through transition. Furthermore, the temperaturespecies PDFs are well correlated, meaning that their joint PDF is not properly approximated by the product of their marginal PDFs; this indicates that the traditional reactive flow modelling based on replacing the joint PDF representing the reaction rate by the product of the marginal PDFs is not appropriate. Finally, the subgrid-scale temperature-species PDFs are also well correlated, and the species PDF exhibits important departures from the Gaussian. These results suggest that classic PDFs used in atmospheric pressure flows would not capture the physics of this supercritical mixing layer, either in an assumed PDF model at the larger scale, or at the subgrid scale.
A critical review of recent investigations in the realm of supercritical ( and subcritical) fluid behavior is presented with the goal of obtaining a perspective on. the peculiarities of high pressure observations. Experiments with drops, isolated or in groups, streams, shear and mix-1 ing layers, jets and sprays are tabulated and discussed as a precursor t,o €orming a conceptual picture of fluid comportment. The physics of fluid behavior in the supercritical and subcritical regimes is discussed, and major differences between the observations in these two regimes are identified and explained. A variety of supercritical fluid models is then examined in the context of drop studies, and salient aspects of fluid behavior are identified. In particular, a model that has been validated with microgravity drop experiments is described and summarized; in this validated model, the differences in subcritical/supercritical comportment are interpreted in terms of lengths scales and it is this difference that is responsible for the traditional Lewis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.