Cells delaminate from epithelial placodes to form sensory ganglia in the vertebrate head. We describe the formation of cranial neurogenic placodes in the zebrafish, Danio rerio, using bHLH transcription factors as molecular markers. A single neurogenin gene, neurogenin1 (ngn1), is required for the development of all zebrafish cranial ganglia, which contrasts with other described vertebrates. Expression of ngn1 delineates zebrafish ganglionic placodes, including trigeminal, lateral line, and epibranchial placodes. In addition, ngn1 is expressed in a subset of cells within the otic vesicle that will delaminate to form the octaval (statoacoustic) ganglion. The trigeminal placode is the first to differentiate, and forms just lateral and adjacent to the neural crest. Expression of ngn1 is transient and prefigures expression of a related bHLH transcription factor, neuroD. Interfering with ngn1 function using a specific antisense morpholino oligonucleotide blocks differentiation of all cranial ganglia but not associated glial cells. Lateral line sensory neuromasts develop independently of ngn1 function, suggesting that two derivatives of lateral line placodes, ganglia and migrating primordia, are under separate genetic control.
The Drosophila eye is composed of dorsal and ventral mirror-image fields of opposite chiral forms of ommatidia. The boundary between these fields is known as the equator. We describe a novel gene, mirror (mrr), which is expressed in the dorsal half of the eye and plays a key role in forming the equator. Ectopic equators can be generated by juxtaposing mrr expressing and nonexpressing cells, and the path of the normal equator can be altered by changing the domain of mrr expression. These observations suggest that mrr is a key component in defining the dorsal-ventral boundary of tissue polarity in the eye. In addition, loss of mrr function leads to embryonic lethality and segmental defects, and its expression pattern suggests that it may also act to define segmental borders. Mirror is a member of the class of homeoproteins defined by the human proto-oncogene PBX1. mrr is similar to the Iroquois genes ara and caup and is located adjacent to them in this recently described homeotic cluster.
Despite the clear major contribution of hyperlipidemia to the prevalence of cardiovascular disease in the developed world, the direct effects of lipoproteins on endothelial cells have remained obscure and are under debate. Here we report a previously uncharacterized mechanism of vessel growth modulation by lipoprotein availability. Using a genetic screen for vascular defects in zebrafish, we initially identified a mutation, stalactite (stl), in the gene encoding microsomal triglyceride transfer protein (mtp), which is involved in the biosynthesis of apolipoprotein B (ApoB)-containing lipoproteins. By manipulating lipoprotein concentrations in zebrafish, we found that ApoB negatively regulates angiogenesis and that it is the ApoB protein particle, rather than lipid moieties within ApoB-containing lipoproteins, that is primarily responsible for this effect. Mechanistically, we identified downregulation of vascular endothelial growth factor receptor 1 (VEGFR1), which acts as a decoy receptor for VEGF, as a key mediator of the endothelial response to lipoproteins, and we observed VEGFR1 downregulation in hyperlipidemic mice. These findings may open new avenues for the treatment of lipoprotein-related vascular disorders.
Hedgehog (Hh) signal transduction is directly required in zebrafish DRG precursors for proper development of DRG neurons. Zebrafish mutations in the Hh signaling pathway result in the absence of DRG neurons and the loss of expression of neurogenin1 (ngn1), a gene required for determination of DRG precursors. Cell transplantation experiments demonstrate that Hh acts directly on DRG neuron precursors. Blocking Hh pathway activation at later stages of embryogenesis with the steroidal alkaloid, cyclopamine,further reveals that the requirement for a Hh signal response in DRG precursors correlates with the onset of ngn1 expression. These results suggest that Hh signaling may normally promote DRG development by regulating expression of ngn1 in DRG precursors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.