We describe a bacterial two-hybrid system that allows an easy in vivo screening and selection of functional interactions between two proteins. This genetic test is based on the reconstitution, in an Escherichia coli cya strain, of a signal transduction pathway that takes advantage of the positive control exerted by cAMP. Two putative interacting proteins are genetically fused to two complementary fragments, T25 and T18, that constitute the catalytic domain of Bordetella pertussis adenylate cyclase. Association of the two-hybrid proteins results in functional complementation between T25 and T18 fragments and leads to cAMP synthesis. Cyclic AMP then triggers transcriptional activation of catabolic operons, such as lactose or maltose, that yield a characteristic phenotype. In this genetic test, the involvement of a signaling cascade offers the unique property that association between the hybrid proteins can be spatially separated from the transcriptional activation readout. This permits a versatile design of screening procedures either for ligands that bind to a given ''bait,'' as in the classical yeast two-hybrid system, or for molecules or mutations that block a given interaction between two proteins of interest.
Although it has been well established that histone acetyltransferases (HATs) are involved in the modulation of chromatin structure and gene transcription, there is only little information on their developmental role in higher organisms. Gcn5 was the first transcription factor with HAT activity identified in eukaryotes. Here we report the isolation and characterization of Drosophila melanogaster dGcn5 mutants. Null dGcn5 alleles block the onset of both oogenesis and metamorphosis, while hypomorphic dGcn5 alleles impair the formation of adult appendages and cuticle. Strikingly, the dramatic loss of acetylation of the K9 and K14 lysine residues of histone H3 in dGcn5 mutants has no noticeable effect on larval tissues. In contrast, strong cell proliferation defects in imaginal tissues are observed. In vivo complementation experiments revealed that dGcn5 integrates specific functions in addition to chromosome binding and acetylation. Surprisingly, a dGcn5 variant protein with a deletion of the bromodomain, which has been shown to recognize acetylated histones, appears to be fully functional. Our results establish dGcn5 as a major histone H3 acetylase in Drosophila which plays a key role in the control of specific morphogenetic cascades during developmental transitions.
SummaryIn wild-type Streptomyces coelicolor MT1110 cultures, cyclic adenosine 3Ј,5Ј monophosphate (cAMP) was synthesized throughout the developmental programme with peaks of accumulation both during germination and later when aerial mycelium and actinorhodin were being produced. Construction and characterization of an adenylate cyclase disruption mutant (BZ1) demonstrated that cAMP facilitated these developmental processes. Although pulse-labelling experiments showed that a similar germination process was initiated in BZ1 and MT1110, germ-tube emergence was severely delayed in BZ1 and never occurred in more than 85% of the spores. Studies of growth and development on solid glucose minimal medium (SMMS, buffered or unbuffered) showed that MT1110 and BZ1 produced acid during the first rapid growth phase, which generated substrate mycelium. Thereafter, on unbuffered SMMS, only MT1110 resumed growth and produced aerial mycelium by switching to an alternative metabolism that neutralized its medium, probably by reincorporating and metabolizing extracellular acids. BZ1 was not able to neutralize its medium or produce aerial mycelium on unbuffered SMMS; these defects were suppressed by high concentrations (>1 mM) of cAMP during early growth or on buffered medium. Other developmental mutants (bldA, bldB, bldC, bldD, bldG ) also irreversibly acidified this medium. However, these bald mutants were not suppressed by exogenous cAMP or neutralizing buffer. BZ1 also differentiated when it was cultured in close proximity to MT1110, a property observed in cross-feeding experiments between bald mutants and commonly thought to reflect diffusion of a discrete positively acting signalling molecule. In this case, MT1110 generated a more neutral pH environment that allowed BZ1 to reinitiate growth and form aerial mycelium. The fact that actinorhodin synthesis could be induced by concentrations of cAMP (< 20 M) found in the medium of MT1110 cultures, suggested that it may serve as a diffusible signalling molecule to co-ordinate antibiotic biosynthesis.
Objective— Expression of human apolipoprotein (h-apo) A-IV in apoE-deficient (apoE 0 ) mice (h-apoA-IV/E 0 ) reduces susceptibility to atherosclerosis. Chronic infection mimicked by exposure to lipopolysaccharide (LPS) increases the size of atherosclerosis lesions in apoE 0 mice. Thus, we used h-apoA-IV/E 0 mice to determine whether h-apoA-IV plays a protective role after LPS administration. Methods and Results— We injected apoE 0 , h-apoA-IV/E 0 , and C57Bl/6 (wild-type) mice intraperitoneally with either LPS or phosphate-buffered saline (PBS) every week for 10 weeks. Atherosclerotic lesions were significantly smaller in h-apoA-IV/E 0 mice treated with LPS than in their apoE 0 counterparts. The titers of IgG2a and IgG2b autoantibodies to oxidized low-density lipoprotein (LDL) were higher in the LPS-group of h-apoA-IV/E 0 mice than in apoE 0 mice, suggesting that the Th1 response is stronger in the presence of h-apoA-IV. Lymphocytes from the blood, liver, spleen, and thymus of h-apoA-IV/E 0 mice treated with LPS produced less IL-4, INF-γ, and TNF-α proinflammatory cytokines than their apoE 0 counterparts. Furthermore, we demonstrated that recombinant h-apoA-IV blocks the LPS-induced stimulation of monocytes. Conclusions— The expression of h-apoA-IV in apoE 0 mice reduces the susceptibility to atherogenesis and decreases the secretion of proinflammatory cytokines after LPS administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.